Nontypeable Haemophilus influenzae (NTHi), once considered a harmless commensal, has emerged as a significant concern due to the increased prevalence of multidrug-resistant (MDR) strains and their association with invasive infections. This study aimed to explore the epidemiology and molecular resistance mechanisms of 51 NTHi isolates collected from patients with invasive infections in northern Taiwan between 2011 and 2020. This investigation revealed substantial genetic diversity, encompassing 29 distinct sequence types and 18 clonal complexes. Notably, 68.6% of the isolates exhibited ampicillin resistance, with 28 categorised as MDR and four isolates were even resistant to up to six antibiotic classes. Among the MDR isolates, 18 pulsotypes were identified, indicating diverse genetic lineages. Elucidation of their resistance mechanisms revealed 18 β-lactamase-producing amoxicillin-clavulanate-resistant (BLPACR) isolates, 12 β-lactamase-producing ampicillin-resistant (BLPAR) isolates, and 5 β-lactamase-nonproducing ampicillin-resistant (BLNAR) isolates. PBP3 analysis revealed 22 unique substitutions in BLPACR and BLNAR, potentially contributing to cephem resistance. Notably, novel transposons, Tn7736-Tn7739, which contain critical resistance genes, were discovered. Three strains harboured Tn7739, containing seven resistance genes [aph(3')-Ia, bla, catA, sul2, strA, strB, and tet(B)], while four other strains carried Tn7736, Tn7737, and Tn7738, each containing three resistance genes [bla, catA, and tet(B)]. The emergence of these novel transposons underscores the alarming threat posed by highly resistant NTHi strains. Our findings indicated that robust surveillance and comprehensive genomic studies are needed to address this growing public health challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2024.107319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!