Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2024.123041 | DOI Listing |
Commun Biol
January 2025
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.
View Article and Find Full Text PDFNat Commun
January 2025
School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCF(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe).
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy.
Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK. Electronic address:
Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates defenses against oxidants and thiol-reactive electrophiles. It is controlled at the protein stability level by several E3 ubiquitin ligases (CRL3, CRL4, SCF, and Hrd1). CRL3 is of the greatest importance because it constitutively targets Nrf2 for proteasomal degradation under homeostatic conditions but is prevented from doing so by oxidative stressors.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!