Mechanistic studies on bioremediation of dye using Aeromonas veronii immobilized peanut shell biochar.

Environ Res

Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Srinivasanagar P.O, Mangalore, 575025, India. Electronic address:

Published: December 2024

Recalcitrant chemicals in the environment not only present obstacles to living organisms but also contribute to the degradation of natural resources. One contribution to environmental pollution is the discharge of synthetic dyes from the textile sector. This study investigates the combined effect of microbial cells and biochar on eliminating methyl orange (MO) dye. The immobilization of Aeromonas veronii on peanut shell biochar (APSB) was conducted to investigate its efficacy in removing MO dye from water. PSB synthesized by pyrolysis at 300 °C for 120 min showed maximum bacterial immobilization potential. The highest degradation rate of 96.19 % was achieved in APSB within 96 h using MO dye concentration of 100 mg L, incubation temperature of 37 °C, pH 7, and biocatalyst dosage of 1g L. In comparison, free cells achieved degradation rates of 72.53 % and 61.56 % for PSB. Moreover, the adsorption process was primarily controlled by PSB, with subsequent dye mineralization by A. veronii, as supported by FTIR and LC-MS studies. Moreover, this innovative approach exhibited the reusability of the biocatalyst, giving 76.23 % removal after fifth cycle, suggesting sustainable alternative in dye remediation and potential option for real-time applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119908DOI Listing

Publication Analysis

Top Keywords

aeromonas veronii
8
peanut shell
8
shell biochar
8
dye
6
mechanistic studies
4
studies bioremediation
4
bioremediation dye
4
dye aeromonas
4
veronii immobilized
4
immobilized peanut
4

Similar Publications

Background: Probiotics and essential oils feed supplements are widely used in the aquaculture sector. This study was conducted to evaluate the effects of dietary supplementation with probiotics, essential oils and their combination on growth performance, serum biochemical parameters, antioxidant capacity, resistance against Aeromonas veronii, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). A total of 360 O.

View Article and Find Full Text PDF

Bacteria of the genus are widely distributed in water bodies around the world. Some species have been identified as human pathogens causing intestinal and a variety of extraintestinal infections. In Germany, information on diseases caused by is rare, because infections are not notifiable in Germany.

View Article and Find Full Text PDF

Functional characterization of the global regulator Hfq in Aeromonas veronii reveals an essential role in pathogenesis and secretion of effectors.

Microb Pathog

December 2024

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China. Electronic address:

Article Synopsis
  • Hfq, an RNA chaperone, is crucial for the virulence and pathogenicity of the infectious bacterium Aeromonas veronii.
  • Deleting the hfq gene leads to decreased swimming motility, reduced biofilm formation, and lower adhesion to epithelial cells, significantly impairing its ability to colonize in host tissues.
  • The study indicates that while hfq deletion reduces some virulence traits, it paradoxically increases secreted proteins and cytotoxicity, suggesting Hfq regulates the expression of virulence factors, balancing pathogenicity and fitness in A. veronii.
View Article and Find Full Text PDF

ArgR regulates motility and virulence through positive control of flagellar genes and inhibition of diguanylate cyclase expression in Aeromonas veronii.

Commun Biol

December 2024

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!