Riparian zones play a vital role in the river ecosystem. Solutes in vertical riparian zones are transported being by alternating hydraulic gradients between river water and groundwater, due to natural or human activities. This study investigates the impacts of porous sediments and alternating rate of surface water-groundwater on nitrogen removal in the riparian zone through experiments based on the field sampled. The experimental results, combined with dimensionless numbers (Péclet and Damköhler) and Partial Least Squares-Path Modeling, analyze the nitrogen fate responding to hydrodynamics changes. The results show that increased sediment porosity contributes to the ammonium removal, particularly when the oxygen content of river water is low, with the removal rate up to 72.57%. High ammonium content and dissolved organic carbon (DOC) in rural rivers lead to a constant low-oxygen condition (4 mg/L) during surface water-groundwater alternation, and promote denitrification. This threatens groundwater with ammonium pollution and causes accumulation at the top of vertical riparian zones during upwelling, potentially causing secondary river pollution. However, increasing the alternating rate hinders the nitrate denitrification and drastically changes in the redox environment of the riparian zone, despite contributing to ammonium removal. Rapid oxygen consumption during aerobic metabolism and nitrification in groundwater-surface water exchange created favorable conditions for denitrification. Floodplains sediment porosity is unfavorable for nitrification. This study improves understanding of coupled hydrologic and solute processes in vertical riparian zones, informing strategies for optimizing nitrogen attenuation and riparian zone construction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.119914 | DOI Listing |
J Environ Manage
December 2024
School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:
This study delves into the multi-scale temporal and spatial variations of soil heat flux (G) within riparian zones and its correlation with net radiation (Rn) across six riparian woodlands in Shanghai, each characterized by distinct vegetation types. The objective is to assess the complex interrelations between G and Rn, and how these relationships are influenced by varying vegetation and seasons. Over the course of a year, data on G and Rn is collected to investigate their dynamics.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Department of Geography and Environmental Systems, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
Hydrologic alterations associated with urbanization can weaken connections between riparian zones, streams, and uplands, leading to negative effects on the ability of riparian zones to intercept pollutants carried by surface water runoff and groundwater flow such as nitrate (NO ) and phosphate (PO ). We analyzed the monthly water table as an indicator of riparian connectivity, along with groundwater NO and PO concentrations, at four riparian sites within and near the Gwynns Falls Watershed in Baltimore, MD, from 1998 to 2018. The sites included one forested reference site (Oregon Ridge), two suburban riparian sites (Glyndon and Gwynnbrook), and one urban riparian site (Cahill) with at least two locations and four monitoring wells, located 5 m from the center of the stream, at each site.
View Article and Find Full Text PDFWater Res
November 2024
Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:
Riparian zones are recognized as major sources of greenhouse gas emissions, particularly methane (CH). Denitrifying anaerobic methane oxidation (DAMO) has garnered growing attention due to its significant contribution to mitigating CH emissions in wetland environments. Nonetheless, the specific role and microbial mechanisms of DAMO in controlling CH release within riparian zones are still not well comprehended.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
Sci Total Environ
December 2024
School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!