Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethnopharmacological Relevance: Zangsiwei(ZSW) is a traditional Tibetan medicine from China consisting of extracts of Rhododendron anthopogonoides Maxim, Gentiana Tourn, Corydalis hendersonii Hemsl and Berberis kansuensis C.K.Schneid. Traditionally, ZSW has been used by Tibetan physicians to treat chronic respiratory diseases. The role of ZSW in particulate matter-induced lung inflammation and fibrosis remains unclear.
Aim Of The Study: Combining non-targeted metabolomics, network pharmacology, and molecular docking to explore the mechanism of ZSW in the treatment of particulate matter-induced lung inflammation and fibrosis, and validated by in vivo and in vitro experiments.
Materials And Methods: The serum metabolite profile post-ZSW administration was first identified utilizing non-targeted metabolomics. Network pharmacology and molecular docking were employed to predict potential bioactive components and their corresponding targets. The in silico predictions were subsequently validated through in vivo studies in mice exposed to PM2.5 and silica dust, as well as in vitro studies utilizing human lung epithelial cells (A549) and lung fibroblasts (MRC5).
Results: Metabolomic analysis identified specific serum metabolites that were associated with ZSW treatment. Network pharmacology and molecular docking identified key targets involved in the Transforming growth factor-β (TGF-β)/SMAD pathway, which were subsequently validated through in vivo experiments demonstrating a reduction in lung inflammation and fibrosis in ZSW-treated mice. In vitro studies demonstrated that ZSW exerts protective effects against PM2.5-induced cytotoxicity and modulates fibrotic markers in a dose-dependent manner. This is consistent with the inhibition of the TGF-β/SMAD pathway.
Conclusion: Our integrated approach, which combines non-targeted metabolomics, network pharmacology, and molecular docking, followed by rigorous in vivo and in vitro validation, establishes ZSW as a potential therapeutic agent for particulate matter-induced lung inflammation and fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2024.118752 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!