Background: Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins.
Methods: The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized.
Results: The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases.
Conclusion: Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373146 | PMC |
http://dx.doi.org/10.1186/s13020-024-00988-w | DOI Listing |
Adv Sci (Weinh)
January 2025
Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse.
View Article and Find Full Text PDFRecent Pat Biotechnol
January 2025
Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), P.O. Box 592 Mghila, Beni Mellal 23000, Morocco.
Aim: This research concerns the patentability of carvacrol; it could be helpful for researchers to easily identify any innovation in the biotechnological application of this monoterpene as well as other similar compounds.
Background: Like thyme or oregano, several plants in the Lamiaceae family produce carvacrol. It is one of the secondary metabolites with several biological activities, including the improvement in plants' resistance and their protection.
Front Plant Sci
January 2025
Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
Introduction: Bryophytes are non-vascular plants that appeared on Earth before vascular plants. More than 24,000 species are reported worldwide, and only a small proportion have been studied. However, part of their biosynthetic potential has been unveiled and more than 1,600 terpenoids have been detected and identified.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
Background: Polydatin (PD), also known as tiger cane glycoside, is a natural compound extracted from the Japanese knotweed plant, which is often referred to as white resveratrol. It exhibits anti-inflammatory, antioxidant, and anti-apoptotic effects in the treatment of various diseases. However, the potential molecular mechanisms of PD in osteoarthritis have not been clearly elucidated.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Rehabilitation Medicine, The Fifth People's Hospital of Chongqing, Chongqing, China.
Background: Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies.
Objective: This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!