Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375894 | PMC |
http://dx.doi.org/10.1186/s13045-024-01601-1 | DOI Listing |
Eur J Dent
January 2025
Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objective: The mechanical stimulation known as orthodontic mechanical force (OMF) causes biological reactions in orthodontic tooth movement (OTM). Heat shock protein-70 (HSP-70) needs pro-inflammatory cytokines to trigger bone resorption in OTM; nevertheless, heat shock protein-10 (HSP-10), a "Alarmin" cytokine, should control these pro-inflammatory cytokines to get the best alveolar bone remodeling (ABR). L.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Purpose: Advanced prostate cancer (PCa) is invariably fatal with the androgen receptor (AR) being a major therapeutic target. AR signaling inhibitors have improved overall survival for men with advanced PCa, but treatment resistance is inevitable and includes reactivation of AR signaling. Novel therapeutic approaches targeting these mechanisms to block tumor growth is an urgent unmet clinical need.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan.
Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, Lomma SE-23422, Sweden.
In this study, the impact of the varying environments, wet-cool (2017), dry-hot (2018), and fluctuating (2019), on two spring wheat genotypes, Diskett and Bumble, grown in field conditions in southern Sweden was studied. From harvested grains, polymeric gluten proteins were fractionated and collected using SE-HPLC and then analyzed with LC-MS/MS. Proteins and peptides identified through searches against the protein sequences of (taxon 4565) from the UniProtKB database showed 7 high molecular weight glutenin subunits (HMW-GS) and 24 low molecular weight glutenin subunits (LMW-GS) with different enrichment levels for both genotypes.
View Article and Find Full Text PDFPlanta
January 2025
Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!