Aspergillus carbonarius, a common food-contaminating fungus, produces ochratoxin A (OTA) and poses a risk to human health. This study aimed to assess the inhibitory activity of tea tree essential oil and its main components, Terpene-4-ol (T4), α-terpineol (αS), and 3-carene (3C) against A. carbonarius. The study showed αS and T4 were the main antifungal components of tea tree essential oil, which primarily inhibit A. carbonarius growth through cell membrane disruption, reducing antioxidant enzyme activities (catalase, peroxidase, superoxide dismutase) and interrupting the tricarboxylic acid cycle. Furthermore, αS and T4 interacted with enzymes related to OTA biosynthesis. Molecular docking and molecular dynamics show that they bound mainly to P450 with a minimum binding energy of -7.232 kcal/mol, we infered that blocking the synthesis of OTA precursor OTβ. Our hypothesis was preliminarily verified by the detection of key substances in the OTA synthesis pathway. The results of UHPLC-QTOF-MS analysis demonstrated that T4 achieved a degradation rate of 43 % for OTA, while αS reached 29.6 %, resulting in final breakdown products such as OTα and phenylalanine. These results indicated that α-terpinol and Terpene-4-ol have the potential to be used as naturally safe and efficient preservatives or active packaging to prevent OTA contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114915 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!