Gastrointestinal digestibility behavior, structural and functional characteristics of bovine β-casein (β-CN) were studied in vitro under infant and adult conditions. This direct comparison helps reveal the effects of different physiological stages on the digestive behavior of β-CN. Not only was the degree of hydrolysis (DH) of β-CN analyzed, but also the changes in its digestive morphology, microstructure, and secondary structure during digestion were explored in depth. Meanwhile, we focused on the physicochemical properties of β-CN digesta, including solubility, emulsifying and foaming properties, as well as their functional properties, such as antimicrobial and antioxidant activities. Key results showed that β-CN underwent more extensive hydrolysis in the adult digestion model, with approximately twice the DH compared to the infant model. The adult model exhibited faster digestion kinetics, less protein flocculation, and a more loosened secondary structure, indicating a more efficient digestion process. Notably, the digesta from the adult model displayed significantly improved solubility and emulsifying properties, and also enhanced antioxidant capacities, with significantly better inhibition of two common pathogenic bacteria than the infant model, and an average increase in the diameter of the inhibition zone of approximately 2 mm. These findings underscore the differential digestive behavior and functional potential of β-CN across physiological stages. This comprehensive assessment approach contributes to a more comprehensive insight into the digestive behavior of β-CN. Therefore, we conclude that producing products from unmodified β-CN may be more suitable for the adult population, and that the digesta in the adult model exhibit higher functional properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!