A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

It's all relative: A multi-generational study using ForenSeq™ Kintelligence. | LitMetric

It's all relative: A multi-generational study using ForenSeq™ Kintelligence.

Forensic Sci Int

Victorian Institute of Forensic Medicine, Victoria, Australia; Department of Forensic Medicine,  Monash University, Victoria, Australia. Electronic address:

Published: November 2024

The successful application of Forensic Investigative Genetic Genealogy (FIGG) to the identification of unidentified human remains and perpetrators of serious crime has led to a growing interest in its use internationally, including Australia. Routinely, FIGG has relied on the generation of high-density single nucleotide polymorphism (SNP) profiles from forensic samples using whole genome array (WGA) (∼650,000 or more SNPs) or whole genome sequencing (WGS) (millions of SNPs) for DNA segment-based comparisons in commercially available genealogy databases. To date, this approach has required DNA of a quality and quantity that is often not compatible with forensic samples. Furthermore, it requires the management of large data sets that include SNPs of medical relevance. The ForenSeq™ Kintelligence kit, comprising of 10,230 SNPs including 9867 for kinship association, was designed to overcome these challenges using a targeted amplicon sequencing-based method developed for low DNA inputs, inhibited and/or degraded forensic samples. To assess the ability of the ForenSeq™ Kintelligence workflow to correctly predict biological relationships, a comparative study comprising of 12 individuals from a family (with varying degrees of relatedness from 1st to 6th degree relatives) was undertaken using ForenSeq™ Kintelligence and a WGA approach using the Illumina Global Screening Array-24 version 3.0 Beadchip. All expected 1st, 2nd, 3rd, 4th and 5th degree relationships were correctly predicted using ForenSeq™ Kintelligence, while the expected 6th degree relationships were not detected. Given the (often) limited availability of forensic samples, findings from this study will assist Australian Law enforcement and other agencies considering the use of FIGG, to determine if the ForenSeq™ Kintelligence is suitable for existing workflows and casework sample types considered for FIGG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2024.112208DOI Listing

Publication Analysis

Top Keywords

forenseq™ kintelligence
24
forensic samples
16
6th degree
8
degree relationships
8
forenseq™
6
kintelligence
6
forensic
5
it's relative
4
relative multi-generational
4
multi-generational study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!