Discovery of selective Orai channel blockers bearing an indazole or a pyrazole scaffold.

Eur J Med Chem

Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. Electronic address:

Published: November 2024

AI Article Synopsis

  • The calcium release activated calcium (CRAC) channel is vital in T lymphocytes for regulating immune functions, including T cell activation and cytokine production.
  • Mutations in CRAC channel components can lead to severe immune disorders like SCID and muscle diseases such as tubular aggregated myopathy (TAM).
  • Recent studies identified compound 4k as a promising selective blocker of the CRAC channel, effectively inhibiting T cell activity while sparing other channels like TRPM4 and TRPM7, potentially offering a new approach for therapeutic interventions.

Article Abstract

The calcium release activated calcium (CRAC) channel is highly expressed in T lymphocytes and plays a critical role in regulating T cell proliferation and functions including activation of the transcription factor nuclear factor of activated T cells (NFAT), cytokine production and cytotoxicity. The CRAC channel consists of the Orai pore subunit and STIM (stromal interacting molecule) endoplasmic reticulum calcium sensor. Loss of CRAC channel mediated calcium signaling has been identified as an underlying cause of severe combined immunodeficiency (SCID), leading to drastically weakened immunity against infections. Gain-of-function mutations in Orai and STIM have been associated with tubular aggregated myopathy (TAM), a skeletal muscle disease. While a number of small molecules have shown activity in inhibiting the CRAC signaling pathway, the usefulness of those tool compounds is limited by their off-target activity against TRPM4 and TRPM7 ion channels, high lipophilicity, and a lack of understanding of their mechanism of action. We report structure-activity relationship (SAR) studies that resulted in the characterization of compound 4k [1-(cyclopropylmethyl)-N-(3-fluoropyridin-4-yl)-1H-indazole-3-carboxamie] as a fast onset, reversible, and selective CRAC channel blocker. 4k fully blocked the CRAC current (IC: 4.9 μM) and the nuclear translocation of NFAT at 30 and 10 μM, respectively, without affecting the electrophysiological function of TRPM4 and TRPM7 channels. Computational modeling appears to support its direction binding to Orai proteins that form the transmembrane CRACchannel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.116805DOI Listing

Publication Analysis

Top Keywords

crac channel
16
trpm4 trpm7
8
crac
6
channel
5
discovery selective
4
orai
4
selective orai
4
orai channel
4
channel blockers
4
blockers bearing
4

Similar Publications

Channels, Transporters, and Receptors at Membrane Contact Sites.

Contact (Thousand Oaks)

December 2024

Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.

Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Regulation of SR and mitochondrial Ca signaling by L-type Ca channels and Na/Ca exchanger in hiPSC-CMs.

Cell Calcium

December 2024

Cardiac Signaling Center of USC, MUSC and Clemson University, 68 President St BEB 306, Charleston, SC 29425, USA. Electronic address:

Rationale & Methods: While signaling of cardiac SR by surface membrane proteins (I & I) is well studied, the regulation of mitochondrial Ca by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.

Results: In voltage-clamped and TIRF-imaged cardiomyocytes, low Na induced SR Ca release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca contribution to low Na triggered SR Carelease.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs.

View Article and Find Full Text PDF

Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.

View Article and Find Full Text PDF

The routing of blood flow throughout the brain vasculature is precisely controlled by mechanisms that serve to maintain a fine balance between local neuronal demands and vascular supply of nutrients. We recently identified two capillary endothelial cell (cEC)-based mechanisms that control cerebral blood flow in vivo: 1) electrical signaling, mediated by extracellular K-dependent activation of strong inward rectifying K (Kir2.1) channels, which are steeply activated by hyperpolarization and thus are capable of cell-to-cell propagation, and 2) calcium (Ca) signaling, which reflects release of Ca via the inositol 1,4,5-trisphosphate receptor (IPR)-a target of G-protein-coupled receptor signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!