Ferroptosis is an iron-dependent form of programmed cell death with the potential to reverse traditional cancer therapy resistance. The combination of ferroptosis with chemotherapy, photodynamic therapy and X-ray therapy has demonstrated remarkably improved therapeutic efficiency. Radiopharmaceutical therapy (RPT) is an emerging approach that achieves precise radiation to diseased tissues via radionuclide delivery. However, insufficient accumulation and retention of therapeutic radiopharmaceuticals in tumor region as well as cancer radioresistance impact treatment efficacy. Here, a nanoassembly of renal clearable ultrasmall iron nanoparticles (USINPs) and I-aPD-L1 is prepared via the affinity of fluorophenylboronic acid modified on the USINPs with I-aPD-L1. The 150 nm USINAs(I-aPD-L1) nanoassembly is stable in blood circulation, effectively targets to the tumor and disassembles in the presence of ATP in the tumor microenvironment. Both in vitro and in vivo experiments prove that USINPs-induced ferroptosis boosted the tumor radiosensitization to I while I-mediated RPT further enhanced ferroptosis. Meanwhile, the immunogenic cell death caused by RPT and ferroptosis combined with PD-L1 immune checkpoint blockade therapy exhibits a strong antitumor immunity. This study provides a novel way to improve the tumor accumulation of ferroptosis inducer and radiopharmaceuticals, insights into the interaction between RPT and ferroptosis and an effective SPECT-guided ferroptosis-enhanced radio-immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2024.122795 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!