AI Article Synopsis

  • Olive oil production in Europe generates significant amounts of by-products, including olive mill wastewater (OMWW), which contains high levels of polyphenols that can be harmful to the environment if not managed properly.
  • OMWW poses a challenge due to the dual nature of polyphenols, as they have beneficial antioxidant properties but can disrupt ecological balance and harm biodiversity when present in high concentrations.
  • This study introduces a novel approach using eco-friendly bismuth-based materials to efficiently capture and photodegrade difficult-to-remove polyphenols from wastewater, achieving a remarkable 98% removal rate while improving water quality.

Article Abstract

Olive oil production is one of the most developed Europe's sectors, producing olive oil and undesirable by-products, such as olive mill wastewater (OMWW) and organic waste. OMWW, containing large amounts of compounds (mainly polyphenols, phenols, and tannins), represents a problem. In fact, polyphenols have dual nature: i) antioxidant beneficial properties, useful in many industrial fields, ii) biorefractory character making them harmful in high concentrations. If not properly treated, polyphenols can harm biodiversity, disrupt ecological balance, and degrade water quality, posing risks to both environment and human health. From a circular economy viewpoint, capturing large quantities of polyphenols to reuse and removing their residuals from water is an open challenge. This study proposes, for the first time, a new path beyond the state-of-the-art, combining adsorption and degradation technologies by novel, eco-friendly and easily recoverable bismuth-based materials to capture large amounts of two model polyphenols (gallic acid and 3,4,5-trimethoxybenzoic acid), which are difficult to remove by traditional processes, and photodegrade them under solar light. The coupled process gave rise to collect 98% polyphenols, and to rapidly and effectively photodegrade the remaining portion from water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122365DOI Listing

Publication Analysis

Top Keywords

novel eco-friendly
8
eco-friendly easily
8
easily recoverable
8
recoverable bismuth-based
8
bismuth-based materials
8
olive oil
8
large amounts
8
polyphenols
7
materials capturing
4
capturing removing
4

Similar Publications

Cellulose nanofibers reinforced carboxylated nitrile butadiene rubber coatings for improved corrosion protection of mild steel.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:

The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Ultrasound technology has been increasingly explored as an eco-friendly method to improve the microbial safety of leafy greens. However, its effect on produce quality is critical, and considerable knowledge gaps remain in this area. The present study examined the response of leafy greens to ultrasound treatment as shown by tissue damage and sensory quality, using a novel multifrequency, multimode, modulated (MMM) system to address the issue of nonuniform ultrasound field distribution.

View Article and Find Full Text PDF

The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.

View Article and Find Full Text PDF

This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!