Biocathode-anode cascade system in PRB: Efficient degradation of p-chloronitrobenzene in groundwater.

Water Res

College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Hangzhou, Zhejiang 311300, China. Electronic address:

Published: November 2024

The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development. Notably, BACP demonstrated a remarkable p-CNB removal efficiency of 94.76 % and a dechlorination efficiency of 64.22 % under a voltage of 0.5 V, surpassing the results achieved through traditional electrochemical and biological treatment processes. Cyclic voltammetric results highlighted the primary contributing factor as the synergistic effect between the bioanode and biocathode. It is speculated that this system primarily relies on bioelectrocatalytic reduction as the predominant process for p-CNB removal, followed by subsequent dechlorination. Furthermore, electrochemical and microbiological tests demonstrated that BACP exhibited optimal electron transfer efficiency and selective microbial enrichment ability under a voltage of 0.3-0.5 V. Additionally, we investigated the operational strategy for initiating BACP in engineering applications. The results showed that directly introducing BACP technology effectively enhanced microbial film formation and pollutant removal performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122359DOI Listing

Publication Analysis

Top Keywords

biocathode-anode cascade
8
cascade system
8
p-cnb groundwater
8
permeable reactive
8
reactive barrier
8
p-cnb removal
8
bacp
6
system
4
system prb
4
prb efficient
4

Similar Publications

Biocathode-anode cascade system in PRB: Efficient degradation of p-chloronitrobenzene in groundwater.

Water Res

November 2024

College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Hangzhou, Zhejiang 311300, China. Electronic address:

The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!