The use of antimicrobial drugs in food-producing animals contributes to the selection pressure on pathogenic and commensal bacteria to become resistant. This study aims to evaluate the existence of trade-offs between treatment effectiveness, cost, and the dynamics of resistance in gut commensal bacteria. We developed a within-host ordinary differential equation model to track the dynamics of antimicrobial drug concentrations and bacterial populations in the site of infection (lung) and the gut. The model was parameterized to represent enrofloxacin treatment for bovine respiratory disease (BRD) caused by Pastereulla multocida in cattle. Three approved enrofloxacin dosing regimens were compared for their effects on resistance on P. multocida and commensal E. coli: 12.5 mg/kg and 7.5 mg/kg as a single dose, and 5 mg/kg as three doses. Additionally, we explored non-FDA-approved regimes. Our results indicated that both 12.5 mg/kg and 7.5 mg/kg as a single dose scenario increased the most the treatment costs and prevalence of P. multocida resistance in the lungs, while 5 mg/kg as three doses increased resistance in commensal E. coli bacteria in the gut the most out of the approved scenarios. A proposed non-FDA-approved scenario (7.5 mg/kg, two doses 24 h apart) showed low economic costs, minimal P. multocida, and moderate effects on resistant E. coli. Overall, the scenarios that decrease P. multocida, including resistant P. multocida did not coincide with those that decrease resistant E. coli the most, suggesting a trade-off between both outcomes. The sensitivity analysis suggests that bacterial populations were the most sensitive to drug conversion factors into plasma ( ), elimination of the drug from the colon ( ), fifty percent sensitive bacteria (P. multocida) killing effect ( ), fifty percent of bacteria (E. coli) above ECOFF killing effect ( ), and net drug transfer rate in the lung ( ) parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374901PMC
http://dx.doi.org/10.1038/s41598-024-70741-8DOI Listing

Publication Analysis

Top Keywords

commensal bacteria
8
bacterial populations
8
commensal coli
8
125 mg/kg 75 mg/kg
8
75 mg/kg single
8
single dose
8
5 mg/kg three
8
three doses
8
resistant coli
8
fifty percent
8

Similar Publications

Purpose: Corynebacterium species are commensals of human skin and mucous membranes and are recognized as important pathogens in ocular infections. This study investigated the clinical characteristics of Corynebacterium keratitis.

Methods: We retrospectively reviewed cases of bacterial keratitis in which Corynebacterium species were solely isolated from corneal scraping cultures collected at Ehime University Hospital between January 2010 and February 2024.

View Article and Find Full Text PDF

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved.

View Article and Find Full Text PDF

Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.

View Article and Find Full Text PDF

Introduction: Cutaneous T-cell lymphoma (CTCL) is closely associated with the host microbiome. While recent evidence suggests that shifts in specific bacterial taxa are associated with response to UV-B, a form of non-ionizing radiation, the impact of ionizing radiation (IR) has not been investigated.

Methods: 16S rRNA and gene amplicon sequencing were performed on DNA extracted from swabs of lesional/non-lesional skin of 12 CTCL patients before/after TSEBT or local IR and from 25 matched healthy controls (HC).

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!