Public health emergencies influence urban carbon emissions, yet an in-depth understanding of deviations between regional emissions under such emergencies and normal levels is lacking. Inspired by the concept of resilience, we introduce the concept of regional carbon resilience and propose four resilience indicators covering periods during and after emergencies. A synthetic difference-in-differences model is employed to compute these indicators, providing a more suitable approach than traditional methods assuming unchanged levels before and after emergencies. Using the COVID-19 pandemic in China as a case study, focusing on the power and industry sectors, we find that over 40% regions exhibit strong resilience (> 0.9). Average in-resilience (0.764 and 0.783) is higher than post-resilience (0.534 and 0.598) in both sectors, indicating lower resilience during than after emergencies. Significant differences in resilience performance exist across regions, with Hebei (0.93) and Hangzhou (0.92) as top performers, and Qinghai (0.29) and Guiyang (0.36) as the least resilient. Furthermore, a preliminary correlation analysis identifies 22 factors affecting carbon resilience; higher energy consumption, stronger industrial production, and a healthier regional economy positively contribute to resilience with coefficients over + 0.3, while pandemic severity negatively impacts resilience, with coefficients up to -0.58. These findings provide valuable references for policymaking to achieve carbon neutrality goals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374798PMC
http://dx.doi.org/10.1038/s41598-024-69785-7DOI Listing

Publication Analysis

Top Keywords

carbon resilience
12
resilience
10
public health
8
health emergencies
8
emergencies synthetic
8
synthetic difference-in-differences
8
resilience coefficients
8
emergencies
6
understanding carbon
4
resilience public
4

Similar Publications

The imperative of addressing climate change has accentuated the pivotal role of reducing greenhouse gas emissions and harnessing the potential of community forests. This study meticulously explores the governance structures and mechanisms underpinning greenhouse gas emissions trading within community forests, aimed at curbing carbon emissions, and enhancing adaptive capacities in Thailand. With a central focus on cultivating enduring climate resilience, this research delves into the interplay of community perspectives with greenhouse gas emissions trading mechanisms, while also dissecting the genesis of sustainable strategies in the Thai context.

View Article and Find Full Text PDF

Urological diseases and their varied forms of management warrant special attention in the setting of climate change. Regarding urological cancers, climate change will probably increase the incidence and severity of cancer diagnoses through exposures to certain environmental risk factors, while simultaneously disrupting cancer care delivery and downstream outcomes. Regarding benign urological diseases, a burgeoning body of work exists on climate-related heat waves, dehydration, urolithiasis, renal injury and infectious and vector-borne diseases.

View Article and Find Full Text PDF

Ecological ditches serve as one of the important measures for the concentrated infiltration of stormwater in the construction process of sponge cities. Prolonged concentrated infiltration of stormwater can lead to the accumulation of pollutants and pollution risks in the substrate of ecological ditches. In this study, two different substrate ecological ditches were constructed, namely, a combined substrate ecological ditch with zeolite + ceramsite (EA), and a biological substrate ecological ditch (EB).

View Article and Find Full Text PDF

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

Climate change impacts the demand of the construction industry to reduce its carbon footprint while increasing the resilience of the buildings. This twofold need emphasises better understanding and cost prediction of green resilient buildings based on their 'resilience' and 'sustainability', which is very limited or based on obsolete perceptions and stereotypes. This study presents a novel index to predict the cost of converting a conventional building to a green-resilient building.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!