A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electro-Driven Multi-Enzymatic Cascade Conversion of CO to Ethylene Glycol in Nano-Reactor. | LitMetric

Electro-Driven Multi-Enzymatic Cascade Conversion of CO to Ethylene Glycol in Nano-Reactor.

Adv Sci (Weinh)

Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Published: November 2024

Multi-enzymatic cascade reaction provides a new avenue for C─C coupling directly from CO under mild conditions. In this study, a new pathway with four enzymes including formate dehydrogenase (PaFDH), formaldehyde dehydrogenase (BmFADH), glycolaldehyde synthase (PpGALS), and alcohol dehydrogenase (GoADH) is developed for directly converting CO gas molecules to ethylene glycol (EG) in vitro. A rhodium-based NADH regeneration electrode is constructed to continuously provide the proton and electron of this multi-enzymatic cascade reaction. The prepared electrode can reach the Faradaic Efficiency (FE) of 82.9% at -0.6 V (vs. Ag/AgCl) and the NADH productivity of 0.737 mM h. Shortening the reaction path is crucial for multi-enzymatic cascade reactions. Here, a hydrogen-bonded organic framework (HOF) nano-reactor is successfully developed to immobilize four enzymes in one pot with a striking enzyme loading capacity (990 mg enzyme g material). Through integrating and optimization of NADH electro-regeneration and enzymatic catalysis in one pot, 0.15 mM EG is achieved with an average conversion rate of 7.15 × 10 mmol CO min mg enzymes in 6 h. These results shed light on electro-driven multi-enzymatic cascade conversion of C─C coupling from CO in the nano-reactor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538636PMC
http://dx.doi.org/10.1002/advs.202407204DOI Listing

Publication Analysis

Top Keywords

multi-enzymatic cascade
20
electro-driven multi-enzymatic
8
cascade conversion
8
ethylene glycol
8
cascade reaction
8
c─c coupling
8
cascade
5
conversion ethylene
4
glycol nano-reactor
4
multi-enzymatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!