Implantable devices hold the potential to address conditions currently lacking effective treatments, such as drug-resistant neural impairments and prosthetic control. Medical devices need to be biologically compatible while providing enhanced performance metrics of low-power consumption, high accuracy, small size, and minimal latency to enable ongoing intervention in brain function. Here, we demonstrate a memristor-based processing system for single-trial detection of behaviorally meaningful brain signals within a timeframe that supports real-time closed-loop intervention. We record neural activity from the reward center of the brain, the ventral tegmental area, in rats trained to associate a musical tone with a reward, and we use the memristors built-in thresholding properties to detect nontrivial biomarkers in local field potentials. This approach yields consistent and accurate detection of biomarkers >98% while maintaining power consumption as low as 4.14 nanowatt per channel. The efficacy of our system's capabilities to process real-time in vivo neural data paves the way for low-power chronic neural activity monitoring and biomedical implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373585 | PMC |
http://dx.doi.org/10.1126/sciadv.adp7613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!