The ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) and its regulatory protein Cdc20 play important roles in the control of different stages of mitosis. APC/C associated with Cdc20 is active and promotes metaphase-anaphase transition by targeting for degradation inhibitors of anaphase initiation. Earlier in mitosis, premature action of APC/C is prevented by the mitotic checkpoint (or spindle assembly checkpoint) system, which ensures that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. The active mitotic checkpoint system promotes the assembly of a Mitotic Checkpoint Complex (MCC), which binds to APC/C and inhibits its activity. The interaction of MCC with APC/C is strongly enhanced by Cdc20 bound to APC/C. While the association of Cdc20 with APC/C was known to be essential for both these stages of mitosis, it was not known how Cdc20 remains bound in spite of ongoing processes, phosphorylation and ubiquitylation, that stimulate its release from APC/C. We find that MCC strongly inhibits the release of Cdc20 from APC/C by the action of mitotic protein kinase Cdk1-cyclin B. This is not due to protection from phosphorylation of specific sites in Cdc20 that affect its interaction with APC/C. Rather, MCC stabilizes the binding to APC/C of partially phosphorylated forms of Cdc20. MCC also inhibits the autoubiquitylation of APC/C-bound Cdc20 and its ubiquitylation-promoted release from APC/C. We propose that these actions of MCC to maintain Cdc20 bound to APC/C in mitosis are essential for the control of mitosis during active mitotic checkpoint and in subsequent anaphase initiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406269PMC
http://dx.doi.org/10.1073/pnas.2413089121DOI Listing

Publication Analysis

Top Keywords

mitotic checkpoint
20
apc/c
14
cdc20
11
checkpoint complex
8
association cdc20
8
regulatory protein
8
ubiquitin ligase
8
apc/c mitosis
8
stages mitosis
8
anaphase initiation
8

Similar Publications

Advanced ovarian cancer often presents with multiple lesions exhibiting varying responses to chemotherapy, highlighting the critical influence of the tumor microenvironment (TME). This study investigates the phenomenon of chemotherapeutic hormesis, wherein low doses of chemotherapeutic agents, such as cisplatin (CDDP) and paclitaxel (PTX), paradoxically stimulate rather than inhibit cancer cell proliferation. Our findings indicate that NOS3 ovarian cancer cells, particularly drug-resistant variants, exhibit enhanced proliferation when exposed to low concentrations of these drugs.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.

View Article and Find Full Text PDF

USP44 regulates HEXIM1 stability to inhibit tumorigenesis and metastasis of oral squamous cell carcinoma.

Biol Direct

December 2024

Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, 1 Longhu Zhonghuan Road, Jinshui District, Zhengzhou, Henan, 450001, China.

Oral squamous cell carcinoma (OSCC) is the most frequent type of oral malignancy with high metastasis and poor prognosis. The deubiquitinating enzyme Ubiquitin Specific Peptidase 44 (USP44) regulates the mitotic checkpoint, and its deficiency leads to aneuploidy and increases tumor incidence. However, the role of USP44 in OSCC is not well understood.

View Article and Find Full Text PDF

Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!