A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bis-Squaramide-Based [2]Rotaxane Hosts for Anion Recognition. | LitMetric

Bis-Squaramide-Based [2]Rotaxane Hosts for Anion Recognition.

Chemistry

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.

Published: December 2024

The first examples of bis-squaramide axle containing [2]rotaxanes linked via rigid aryl and flexible alkyl spacers synthesised using copper(I) catalysed active metal template methodology are reported. The halide and oxoanion binding properties of the [2]rotaxanes in aqueous-organic solvent media are examined through extensive H-NMR titration experiments to investigate the impact of integrating multiple squaramide motifs on the anion binding capabilities of the interlocked receptors. These studies reveal that the bis-squaramide rotaxane host systems exhibit enhanced halide anion binding capabilities relative to a mono-squaramide axle functionalised rotaxane, demonstrating a rare anti-Hofmeister bias halide anion selectivity trend in aqueous-organic mixtures and highlighting the efficacy of the potent solvent shielded hydrophobic interlocked binding pocket created upon mechanical bond formation. Notably, employing a rigid aryl linker between the two squaramide motifs in the axle component enables the rotaxane host to exhibit strong and selective binding of tetrahedral oxoanions. Conversely, a flexible alkyl spacer facilitates trigonal oxoanion selective recognition by the bis-squaramide [2]rotaxane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632403PMC
http://dx.doi.org/10.1002/chem.202402731DOI Listing

Publication Analysis

Top Keywords

rigid aryl
8
flexible alkyl
8
squaramide motifs
8
anion binding
8
binding capabilities
8
rotaxane host
8
halide anion
8
binding
5
bis-squaramide-based [2]rotaxane
4
[2]rotaxane hosts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!