Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mechanical ventilation (MV) is vital for critically ill ICU patients but carries significant mortality risks. This study aims to develop a predictive model to estimate hospital mortality among MV patients, utilizing comprehensive health data to assist ICU physicians with early-stage alerts.
Methods: We developed a Machine Learning (ML) framework to predict hospital mortality in ICU patients receiving MV. Using the MIMIC-III database, we identified 25,202 eligible patients through ICD-9 codes. We employed backward elimination and the Lasso method, selecting 32 features based on clinical insights and literature. Data preprocessing included eliminating columns with over 90% missing data and using mean imputation for the remaining missing values. To address class imbalance, we used the Synthetic Minority Over-sampling Technique (SMOTE). We evaluated several ML models, including CatBoost, XGBoost, Decision Tree, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Logistic Regression, using a 70/30 train-test split. The CatBoost model was chosen for its superior performance in terms of accuracy, precision, recall, F1-score, AUROC metrics, and calibration plots.
Results: The study involved a cohort of 25,202 patients on MV. The CatBoost model attained an AUROC of 0.862, an increase from an initial AUROC of 0.821, which was the best reported in the literature. It also demonstrated an accuracy of 0.789, an F1-score of 0.747, and better calibration, outperforming other models. These improvements are due to systematic feature selection and the robust gradient boosting architecture of CatBoost.
Conclusion: The preprocessing methodology significantly reduced the number of relevant features, simplifying computational processes, and identified critical features previously overlooked. Integrating these features and tuning the parameters, our model demonstrated strong generalization to unseen data. This highlights the potential of ML as a crucial tool in ICUs, enhancing resource allocation and providing more personalized interventions for MV patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373795 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309383 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!