Anthropometric prevalence indicators such as stunting, wasting, and underweight are widely-used population-level tools used to track trends in childhood nutrition. Threats to the validity of these data can lead to erroneous decision making and improper allocation of finite resources intended to support some of the world's most vulnerable populations. It has been demonstrated previously that aggregated prevalence rates for these indicators can be highly sensitive to biases in the presence of non-directional measurement errors, but the quantitative relationship between the contributing factors and the scale of this bias has not been fully described. In this work, a Monte Carlo simulation exercise was performed to generate high-statistics z-score distributions with a wide range of mean and standard deviation parameters relevant to the populations in low- and middle-income countries (LMIC). With the important assumption that the distribution's standard deviation should be close to 1.0 in the absence of non-directional measurement errors, the shift in prevalence rate due to this common challenge is calculated and explored. Assuming access to a given z-score distribution's mean and standard deviation values, this relationship can be used to evaluate the potential scale of prevalence bias for both historical and modern anthropometric indicator results. As a demonstration of the efficacy of this exercise, the bias scale for a set of 21 child anthropometry datasets collected in LMIC contexts is presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373794 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304131 | PLOS |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
The ubiquitous distribution of microplastics (MPs) in aquatic environments is linked to their transport in rivers and streams. However, the specific mechanism of bedload microplastic (MP) transport, notably their stochastic behaviors, remains an underexplored area. To investigate this, particle tracking velocimetry was employed to examine the continuous near-bed movements of four types of MPs under nine setups with different experimental conditions in a laboratory flume, with an emphasis on their streamwise transport.
View Article and Find Full Text PDFJ Clin Sleep Med
January 2025
Department of Convergence Healthcare Medicine, Ajou University, Suwon, Republic of Korea.
Study Objectives: Undiagnosed or untreated moderate to severe obstructive sleep apnea (OSA) increases cardiovascular risks and mortality. Early and efficient detection is critical, given its high prevalence. We aimed to develop a practical and efficient approach for obstructive sleep apnea screening, using simple facial photography and sleep questionnaires.
View Article and Find Full Text PDFWe present a new, to the best of our knowledge, approach for self-heterodyne optical frequency comb (OFC) spectroscopy in which a single Mach-Zehnder modulator is utilized to generate both an optical frequency comb and a frequency-shifted local oscillator. This method allows for coherent, time-domain averaging to be performed without the need for feedback mechanisms or software corrections. As an initial demonstration, we have measured acetylene rovibrational transition frequencies with coherently averaged comb spectra.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
Background And Purpose: MRI is crucial for multiple sclerosis (MS), but the relative value of portable ultra-low field MRI (pULF-MRI), a technology that holds promise for extending access to MRI, is unknown. We assessed white matter lesion (WML) detection on pULF-MRI compared to high-field MRI (HF-MRI), focusing on blinded assessments, assessor self-training, and multiplanar acquisitions.
Methods: Fifty-five adults with MS underwent pULF-MRI following their HF-MRI.
Biomed Eng Online
January 2025
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
Objective: This study presents a novel digital interproximal enamel reduction (IER) clinical procedure, aiming to improve the effectiveness of IER processes in orthodontic treatment.
Methods: A malocclusion case of skeletal-class I and angle-class I was selected for the experimental investigation. A three-dimensional (3D) model of the dentition was constructed using scanning data from a plaster model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!