AI Article Synopsis

  • Heavy rainfall disasters due to climate change have increased concerns over chemical contamination from factories, necessitating a swift evaluation method for hazardous contaminants.
  • This study introduces a "toxicity screening" method that integrates biological response testing and chemical analysis in three steps to evaluate water quality, including measuring metal content and identifying organic contaminants.
  • Testing the method with industrial wastewater revealed that seven samples were toxic, primarily due to residual chlorine and metals, while contributing factors like tri-n-octyl phosphate (TNOP) were found to have negligible effects on toxicity; results can be obtained within 12 days.

Article Abstract

In recent years, heavy rainfall disasters linked to climate change have become more frequent, raising concerns about the release of chemicals stored in factories. Assessing chemical contamination during such emergencies therefore necessitates the development of a quick and easy method for evaluating hazardous contaminants in combination with toxicity testing. This study proposes a "toxicity screening" method that combines biological response testing and chemical analysis to systematically evaluate hazardous contaminants in emergency situations. The toxicity screening method evaluates the water quality in three steps, including water quality measurements and a delayed fluorescence (DF) assay, metal content measurements and a DF assay, and targeted screening analysis and a DF assay. The efficacy of this method was tested using industrial wastewater from 14 locations. Seven of the samples were non-toxic, while the other seven samples were toxic, displaying no observed effect concentration (NOEC) values ranging from 0.625 to 20%. Two toxic samples in the first phase possessed high total chlorine concentrations (0.4 mg L) and conductivities (2200 mS m), indicating that the main sources of toxicity were residual chlorine and a high salt concentration. In the second phase, metal content analysis identified metals as the toxicity cause in four samples. In the third phase, the organic contaminants were analyzed, and tri-n-octyl phosphate (TNOP) was detected at a concentration of 0.00027 mg L. The results of solid-phase extraction experiments and exposure tests with TNOP alone indicated that the contribution of TNOP to the toxicity was negligible and that chemicals not adsorbed on the solid-phase extraction cartridges were the cause of toxicity. The proposed method can therefore be considered effective for disaster-related water quality assessment, delivering results within 12 days.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34821-6DOI Listing

Publication Analysis

Top Keywords

water quality
12
toxicity screening
8
screening method
8
chemical analysis
8
delayed fluorescence
8
hazardous contaminants
8
metal content
8
solid-phase extraction
8
method
6
toxicity
6

Similar Publications

Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.

Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.

View Article and Find Full Text PDF

Ensuring the supply of safe and high-quality drinking water can be compromised by the presence of chironomid larvae in drinking water treatment plants (DWTPs), which may contaminate municipal water systems through freshwater resources. Chironomids are dominant species known for their resilience to a broad range of extreme aquatic environments. This study aimed to identify the morphological characteristics and obtain genetic information of the chironomid Paratanytarsus grimmii found in the water intake source and freshwater resource of DWTPs in Korea, highlighting the potential possibility of a parthenogenetic chironomid outbreak within DWTP networks.

View Article and Find Full Text PDF

Background: Despite the rising prevalence of common mental symptoms, information is scarce on how health workers make sense of symptoms of mental disorders and perceive a link with inadequate water, sanitation, and hygiene (WASH) as work stressors to understand causation and produce useful knowledge for policy and professionals. Therefore, this study aimed to explore how health workers perceive the link between inadequate WASH and common mental symptoms (CMSs) at hospitals in central and southern Ethiopian regions.

Methods: We used an interpretive and descriptive phenomenological design guided by theoretical frameworks.

View Article and Find Full Text PDF

Due to incessant contamination of the groundwater system near the dumpsite in southwestern Nigeria Basement Complex, this study seeks to evaluate the impact of the Odogbo dumpsite on the local groundwater system by integrating geophysical and geochemical methodologies. Aeromagnetic data covering the study area was acquired, processed, and enhanced to delineate basement features that could potentially be passing plumes to the groundwater system. Concurrently, geoelectric methods using 2-D dipole-dipole imaging and vertical electrical sounding (VES) were utilized to characterize the vulnerability indices of the lithologies underlying the dumpsite.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!