Monomer-mediated growth of β-cyclodextrin-based microporous organic network as stationary phase for capillary electrochromatography.

Anal Bioanal Chem

Department of Pharmacy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China.

Published: November 2024

CD-MONs (β-cyclodextrin-based microporous organic networks), derived from β-cyclodextrin, possess notable hydrophobic characteristics, a considerable specific surface area, and remarkable stability, rendering them highly advantageous in separation science. This research aimed to investigate the utility of CD-MONs in chromatography separation. Through a monomer-mediated technique, we fabricated an innovative CD-MON modified capillary column for application in open-tubular capillary electrochromatography (OT-CEC). The CD-MON-based stationary phase on the capillary's inner surface was analyzed using Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). We assessed the performance of the CD-MON modified capillary column for separation purposes. The microstructure and pronounced hydrophobicity of CD-MON contributed to enhanced selectivity and resolution in separating diverse hydrophobic analytes, such as alkylbenzenes, halogenated benzenes, parabens, and polycyclic aromatic hydrocarbons (PAHs). The maximum column efficiency achieved was 1.5 × 10 N/m. Additionally, the CD-MON modified capillary column demonstrated notably high column capacity, with a methylbenzene mass loading capacity of up to 197.9 pmol, surpassing that of previously reported porous-material-based capillaries. Furthermore, this self-constructed column was effectively utilized for PAHs determination in actual environmental water samples, exhibiting spiked recoveries ranging from 93.2 to 107.9% in lake water samples. These findings underscore the potential of CD-MON as an effective stationary phase in separation science.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05514-3DOI Listing

Publication Analysis

Top Keywords

stationary phase
12
cd-mon modified
12
modified capillary
12
capillary column
12
β-cyclodextrin-based microporous
8
microporous organic
8
capillary electrochromatography
8
separation science
8
water samples
8
column
6

Similar Publications

PolyCrit: An Online Collaborative Platform for Polymer Characterization.

J Chromatogr A

March 2025

Department of Chemistry, University of Memphis, Memphis, TN, 38152, USA. Electronic address:

Polymer liquid chromatography at critical conditions (LCCC) is a chromatographic separation condition achieved by carefully balancing the interaction of a polymer with stationary and mobile phases to make the elution time of a polymer in chromatography independent of its molecular weight. By removing the dependence of elution time on polymer molecular weight, the LCCC then allows separation of polymer samples on the basis of secondary differences, such as topology, branching, and end-group functionality, that are otherwise difficult to resolve. Despite its potential, LCCC remains under-employed due to the complexity of its optimization and the scattered nature of existing data.

View Article and Find Full Text PDF

Novel treatment options are needed for the gastric pathogen due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on growth, viability, antibiotic resistance, motility and gene expression using clinical isolates.

View Article and Find Full Text PDF

Theoretical evidence of the CO reduction by a Mo-based complex: a DFT study based on the reaction force decomposed into four components.

J Mol Model

March 2025

Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello (UNAB), Av. República 275, Santiago, 8370146, Región Metropolitana, Chile.

Context: The conversion of carbon dioxide into methanoic acid through direct hydrogenation with H in the gas phase implies overcoming a high activation energy (more than 60 kcal mol ) that makes the process kinetically infeasible. In this study, the use of the [(PY Me )Mo(III)(H)(OH)] complex instead of H lowered the activation energy of the hydrogenation by 98.5%.

View Article and Find Full Text PDF

The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates.

View Article and Find Full Text PDF

A 3D-printed high-hardness die steel microchip GC column: 3-meter long, low-cost, and exhibiting superior separation performance.

J Chromatogr A

March 2025

Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. Electronic address:

In this work, a 3D-printed metal column engineered specifically for micro gas chromatography applications was developed, and an in-depth characterization of its performance and gas separation capabilities were conducted. A microchip gas chromatography column, with dimensions 7.0 × 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!