A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PEPerMINT: peptide abundance imputation in mass spectrometry-based proteomics using graph neural networks. | LitMetric

Motivation: Accurate quantitative information about protein abundance is crucial for understanding a biological system and its dynamics. Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry (MS) protocols. Here, proteins are digested into peptides before quantification via MS. However, missing peptide abundance values, which can make up more than 50% of all abundance values, are a common issue. They result in missing protein abundance values, which then hinder accurate and reliable downstream analyses.

Results: To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly on the peptide level that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid sequence information into account. We benchmark our method against 11 common imputation methods on 6 diverse datasets, including cell lines, tissue, and plasma samples. We observe that PEPerMINT consistently outperforms other imputation methods. Its prediction performance remains high for varying degrees of missingness, different evaluation approaches, and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful uncertainty estimates and allows for tailoring imputation to the user's needs based on the reliability of imputed values.

Availability And Implementation: The code is available at https://github.com/DILiS-lab/pepermint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373339PMC
http://dx.doi.org/10.1093/bioinformatics/btae389DOI Listing

Publication Analysis

Top Keywords

abundance values
16
protein abundance
12
peptide abundance
8
graph neural
8
imputation methods
8
abundance
7
pepermint
4
pepermint peptide
4
imputation
4
abundance imputation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!