Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivation: Accurate quantitative information about protein abundance is crucial for understanding a biological system and its dynamics. Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry (MS) protocols. Here, proteins are digested into peptides before quantification via MS. However, missing peptide abundance values, which can make up more than 50% of all abundance values, are a common issue. They result in missing protein abundance values, which then hinder accurate and reliable downstream analyses.
Results: To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly on the peptide level that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid sequence information into account. We benchmark our method against 11 common imputation methods on 6 diverse datasets, including cell lines, tissue, and plasma samples. We observe that PEPerMINT consistently outperforms other imputation methods. Its prediction performance remains high for varying degrees of missingness, different evaluation approaches, and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful uncertainty estimates and allows for tailoring imputation to the user's needs based on the reliability of imputed values.
Availability And Implementation: The code is available at https://github.com/DILiS-lab/pepermint.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373339 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!