Unlabelled: Motivation: Mobile genetic elements (MGEs) are as ubiquitous in nature as they are varied in type, ranging from viral insertions to transposons to incorporated plasmids. Horizontal transfer of MGEs across bacterial species may also pose a significant threat to global health due to their capability to harbor antibiotic resistance genes. However, despite cheap and rapid whole-genome sequencing, the varied nature of MGEs makes it difficult to fully characterize them, and existing methods for detecting MGEs often do not agree on what should count. In this manuscript, we first define and argue in favor of a divergence-based characterization of mobile-genetic elements. Results: Using that paradigm, we present skandiver, a tool designed to efficiently detect MGEs from whole-genome assemblies without the need for gene annotation or markers. skandiver determines mobile elements via genome fragmentation, average nucleotide identity (ANI), and divergence time. By building on the scalable skani software for ANI computation, skandiver can query hundreds of complete assemblies against >65 000 representative genomes in a few minutes and 19 GB memory, providing scalable and efficient method for elucidating mobile element profiles in incomplete, uncharacterized genomic sequences. For isolated and integrated large plasmids (>10 kb), skandiver's recall was 48% and 47%, MobileElementFinder was 59% and 17%, and geNomad was 86% and 32%, respectively. For isolated large plasmids, skandiver's recall (48%) is lower than state-of-the-art reference-based methods geNomad (86%) and MobileElementFinder (59%). However, skandiver achieves higher recall on integrated plasmids and, unlike other methods, without comparing against a curated database, making skandiver suitable for discovery of novel MGEs.
Availability And Implementation: https://github.com/YoukaiFromAccounting/skandiver.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373320 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae398 | DOI Listing |
ISME J
January 2025
Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain.
Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Product & Systems Design Engineering, University of the Aegean, 84100 Syros, Greece.
This paper addresses the complex problem of multi-goal robot navigation, framed as an NP-hard traveling salesman problem (TSP), in environments with both static and dynamic obstacles. The proposed approach integrates a novel path planning algorithm based on the Bump-Surface concept to optimize the shortest collision-free path among static obstacles, while a Genetic Algorithm (GA) is employed to determine the optimal sequence of goal points. To manage static or dynamic obstacles, two fuzzy controllers are developed: one for real-time path tracking and another for dynamic obstacle avoidance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
The global dissemination of pathotypes with multidrug-resistant (MDR) and hypervirulent traits poses a threat to public health. The situation in Armenia is unclear, and we performed a comprehensive characterisation of 48 clinical isolates of , collected from 2018 to 2024. The majority of the isolates (64.
View Article and Find Full Text PDFMicroorganisms
January 2025
Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
is one of the leading bacterial causes of gastroenteritis worldwide. It frequently contaminates poultry and other raw meat products, which are the primary sources of infections in humans. Plasmids, known as important mobile genetic elements, often carry genes for antibiotic resistance, virulence, and self-mobilization.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
Background: Antimicrobial resistance is one of the greatest challenges of our time, urging researchers in both veterinary and public health to engage in collaborative efforts, thereby fostering the One Health approach. Infections caused by species can not only lead to significant diseases in poultry but also pose serious threats to human life, particularly in hospital (nosocomial) infections; therefore, it is crucial to identify their antimicrobial resistance.
Methods: Our objective was to assess the susceptibility profile of commensal strains ( = 227) found in commercial chicken flocks in Hungary through the determination of minimum inhibitory concentration (MIC) values.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!