Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8 to 10-fold increase in research output related to all 3 search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the (US, n = 1487), (UK, n = 1094), Germany (n = 355), The Netherlands (n = 339), Russia (n = 215), and France (n = 149), while for AI-related research the US (n = 853) and UK (n = 258) take a strong lead, followed by Switzerland (n = 69), The Netherlands (n = 37), and Germany (n = 19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection among AI, SysBio, and SC research over the past 2 decades, with substantial growth in all 3 fields and exponential increases in AI-related research in the past decade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/stmcls/sxae054 | DOI Listing |
J Exp Biol
December 2024
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany.
Increasing frequencies of heatwaves threaten marine ectotherm species but not all alike. In exposed habitats, some species rely on a higher capacity for passive tolerance at higher temperatures, thereby extending time-dependent survival limits. Here we assess how the involvement of the cardiovascular system in extended tolerance at the margins of the thermal performance curve is dependent on warming rate.
View Article and Find Full Text PDFVirus Evol
December 2024
CIRAD, UMR PVBMT, St Pierre, La Réunion F-97410, France.
Now that it has been realized that viruses are ubiquitous, questions have been raised on factors influencing their diversity and distribution. For phytoviruses, understanding the interplay between plant diversity and virus species richness and prevalence remains cardinal. As both the amplification and the dilution of viral species richness due to increasing host diversity have been theorized and observed, a deeper understanding of how plants and viruses interact in natural environments is needed to explore how host availability conditions viral diversity and distributions.
View Article and Find Full Text PDFStud Mycol
December 2024
Herbarium Hamburgense, Institute for Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany.
The is an independent lichenized lineage within the comprising . 390 species and 50 genera. Very few studies have dealt with family and genus classification using molecular data and many groups are in need of thorough revision.
View Article and Find Full Text PDFEcol Evol
December 2024
Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria Università Degli Studi di Napoli Federico II Napoli Italy.
With their unique ecosystems and evolutionary dynamics, small islands offer fascinating contexts to explore animal diversity. Island bats are key players in maintaining ecological balance. However, their populations are threatened worldwide, necessitating comprehensive research and conservation strategies.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Biomedical Engineering, Boston University, Boston, MA, United States.
Introduction: Antimicrobial resistance (AMR) is a global health crisis that is predicted to worsen in the coming years. While improper antibiotic usage is an established driver, less is known about the impact of other endogenous and exogeneous environmental factors, such as metals, on AMR. One metal of interest is zinc as it is often used as a supplement for diarrhea treatment prior to antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!