Metalloporphyrins are ubiquitous in their applications as triplet photosensitizers, particularly for promoting sensitized photochemical upconversion processes. In this study, bimolecular excited state triplet-triplet quenching kinetics, termed homomolecular triplet-triplet annihilation (HTTA), exhibited by the traditional triplet photosensitizers-zinc(II) tetraphenylporphyrin (ZnTPP), palladium(II) octaethylporphyrin (PdOEP), platinum(II) octaethylporphyrin (PtOEP), and platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP)─were revealed using conventional transient absorption spectroscopy. Nickel(II) tetraphenylporphyrin was used as a control sample as it is known to be rapidly quenched intramolecularly through ligand-field state deactivation and, therefore, cannot result in triplet-triplet annihilation (TTA). The single wavelength transients associated with the metalloporphyrin triplet excited state decay─measured as a function of incident laser pulse energy in toluene─were well modeled using parallel first- and second-order kinetics, consistent with HTTA being operable. The combined transient kinetic data enabled the determination of the first-order rate constants () for excited triplet decay in ZnTPP (4.0 × 10 s), PdOEP (3.6 × 10 s), PtOEP (1.2 × 10 s), and PtTPBP (2.1 × 10 s) as well as the second-order rate constant () for HTTA in ZnTPP (5.5 × 10 M s), PdOEP (1.1 × 10 M s), PtOEP (7.1 × 10 M s), and PtTPBP (1.6 × 10 M s). In most instances, triplet excited state extinction coefficients are either reported for the first time or have been revised using ultrafast transient absorption spectroscopy and singlet depletion: ZnTPP (78,000 M cm) at 470 nm, PdOEP (67,000 M cm) at 430 nm, PtOEP (51,000 M cm) at 418 nm, and PtTPBP (100,000 M cm) at 460 nm. The combined experimental results establish competitive time scales for homo- and heteromolecular TTA rate constants, implying the significance of considering HTTA processes in future research endeavors harnessing TTA photochemistry using common metalloporphyrin photosensitizers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c05052 | DOI Listing |
J Phys Chem Lett
January 2025
School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
Controlling intermolecular interactions, such as triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), is crucial for achieving high quantum efficiency in organic light-emitting diodes (OLEDs) by suppressing exciton loss. This study investigates the molecular design of tetradentate Pt(II) complexes used for singlet exciton harvesting in fluorescent OLEDs to elucidate the relationship between the chemical structure of the ligands and exciton quenching mechanisms. It was discovered that the bulkiness of substituents is pivotal for maximizing quantum efficiency in these devices.
View Article and Find Full Text PDFChempluschem
January 2025
Lodz University of Technology, Molecular Physics, Faculty of Chemistry, POLAND.
The advancement of organic room temperature phosphorescence (RTP) materials has attracted considerable interest owing to their extensive applications. Their distinct advantages, including a metal-free composition, low toxicity, and facile synthesis under ambient conditions, make them highly desirable. This study examines the delayed fluorescence (DF) and RTP of metal-free, amorphous indenophenanthridine (IND)-based derivatives (1-10) and provides insights into molecular functionalisation and host matrix effects on delayed emission (RTP and DF).
View Article and Find Full Text PDFMater Adv
January 2025
Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).
View Article and Find Full Text PDFChemistry
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
Photophysical properties of condensed systems generally originate from collective contributions of all components in their stochastically fluctuated structures and are strongly influenced under strain of chromophores. To precisely identify how the stochastically fluctuated monomers synergistically manipulate the properties, we propose a statistic strategy over sufficient ab initio molecular dynamics (AIMD) samplings and for the first time uncover that synergistic oscillatory twisting (SOT) of neighboring under-strain monomers manipulates the bifunction of rubrene crystal. The under-strain trunk SOT can regulate both singlet fission (SF) and triplet-triplet annihilation (TTA), enabling their coexistence and dominance switching by dynamically modulating the matching of excitation energies.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan 475004, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!