Patterns of herbicide resistance in Raphanus raphanistrum revealed by comprehensive testing and statistical analysis.

Pest Manag Sci

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.

Published: December 2024

Background: Raphanus raphanistrum causes $40 million total revenue losses annually in Western Australia partly due to its historically-documented ability to evolve herbicide resistance to multiple modes of action. In this study, 376 field-sampled populations of R. raphanistrum were tested for resistance to 21 herbicides applied at the recommended label rate. Eight treatments were herbicide mixtures with two, three or four modes of action.

Results: A total of 7199 individual resistance tests were conducted across 4 years by screening approximately 104 000 individual seeds and seedlings. The mean survival of individuals within a population for all standalone herbicides was 9%, whereas survival was significantly decreased to 3.5% with a herbicide mixture. Some herbicides such as triasulfuron (herbicide Group 2), 2,4-D (Group 4) or diflufenican (Group 12) were highly impacted by resistance, with frequencies of resistant populations being > 50%. Conversely, there was negligible resistance to glyphosate (Group 9) or protoporphyrinogen oxidase (PPO) inhibitors (tiafenacil, saflufenacil + trifludimoxazin, fomesafen: Group 14), and pre-emergence herbicides (i.e., atrazine or mesotrione: Groups 5 and 27, respectively) remained largely effective. Binary, ternary or quaternary mixtures of Groups 4, 6, 12 and 27 herbicides reduced the frequency of high-level resistant populations to 7.1%, 3.8% or 0%, respectively.

Conclusions: The cost-effective control of R. raphanistrum remains a challenge due to herbicide resistance. Raphanus raphanistrum management relies heavily on herbicide uses not yet compromised by resistance, such as pre-emergence herbicides (atrazine, fomesafen, mesotrione), glyphosate, and mixtures of two, three or four modes of action including bromoxynil, diflufenican, MCPA, picolinafen, pyrasulfotole and topramezone. Strategies that integrate effective herbicide use patterns, novel modes of action and efficiently-mechanized non-chemical weed control options (i.e., seed destructors) can completely constrain the selection of herbicide resistance in this highly adaptable species. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.8394DOI Listing

Publication Analysis

Top Keywords

herbicide resistance
16
raphanus raphanistrum
12
modes action
12
resistance
9
resistance raphanus
8
herbicide
8
mixtures three
8
three modes
8
resistant populations
8
pre-emergence herbicides
8

Similar Publications

Towards enhancing phytoremediation: The effect of syringic acid, a plant secondary metabolite, on the presence of phenoxy herbicide-tolerant endophytic bacteria.

Sci Total Environ

January 2025

UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.

Among emerging pollutants, residuals of phenoxy herbicides, including 2-chloro-4-methylphenoxy acid (MCPA), are frequently detected in non-targeted areas. MCPA can be removed from environmental matrices using biological remediation methods including endophyte-assisted phytoremediation. The interactions between selected plants excreting to the rhizosphere plant secondary metabolites (PSMs) and plant-associated bacteria (incl.

View Article and Find Full Text PDF

Inhibition of the invasive plant Ambrosia trifida by Sigesbeckia glabrescens extracts.

Ecotoxicol Environ Saf

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Affecting of Glyphosate Tolerance and Metabolite Content in Transgenic Overexpressing Gene from .

Plants (Basel)

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.

View Article and Find Full Text PDF

Pyroxsulam Resistance in : An Emerging Challenge in Crop Protection.

Plants (Basel)

December 2024

Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.

, a prevalent weed in Czech winter wheat fields, has developed resistance to ALS-inhibiting herbicides due to their frequent use. This study reports a biotype of resistant to pyroxsulam, with cross and multiple resistance to iodosulfuron, propoxycarbazone, pinoxaden, and chlortoluron. Dose-response experiments revealed high resistance of both R1 and R2 biotypes to pyroxsulam, with resistance factors (RF) of 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!