Due to the overexploitation of deep groundwater, the largest cone of depression in the world has formed in the North China Plain. This led to severe geological hazards, including land subsidence and ground fissures, and also caused economic losses. The prevention and treatment of subsidence needs to rely on the accurate prediction of subsidence amount. According to the one-dimensional consolidation theory and effective stress principle, combined with stratum structure, groundwater flow, stress distribution, and so forth, the high-pressure consolidation test results of 569.6 m deep borehole soil samples are adopted; with a specific focus on stress and deformation parameters under exploitation of groundwater condition, the soil-water coupling prediction model of groundwater level lowering depth and land subsidence has been established. Verification with measured subsidence data near the study sites demonstrated that the predicted curve is consistent with the measured one and the differences between them are acceptable. The model can be applied in different areas after making adjustment based on different regional stratigraphic structures. Its key advantage lies in the ability to provide land subsidence prediction for areas lacking monitoring data, making it highly valuable for widespread application. PRACTITIONER POINTS: There is a compressible stratum structure; it is the internal factors of land subsidence. The groundwater level decline causes the soil body stress to change. It is land subsidence of the external factors. Based on the one-dimensional consolidation theory and by combining stratigraphic structures, groundwater flow, and stress distribution, a ground settlement prediction model was established.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.11111 | DOI Listing |
Mar Pollut Bull
December 2024
Faculty of Engineering, Cairo University, 1 Gamaa Street, P.O. Box 12613, Giza, Egypt.
Archaeological sites in deltaic regions face increasing environmental threats. This study provides the first assessment of seawater intrusion and land subsidence impacts on archaeological sites in the Nile Delta through hydrochemical investigations, InSAR techniques, and multi-criteria decision analysis of 33 sites. The results reveal that 80.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
Mine ecological restoration has experienced a long-term development process in China, in which various technologies have been constantly developing and integrating. Based on the related theoretical research and field program, the technical system of mine ecological restoration was constructed, and the characteristics of key technologies were specifically grasped. In this research, the environment, including natural elements and the spatial environment, is the object of mine ecological restoration, which requires further long-term investigation and monitoring.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Lunan Geo-engineering Exploration Institute of Shandong Province (Shandong Provincial Bureau of Geology and Mineral Resources No. 2 Geology Group), Jining 272100, China.
Soil heavy metal (HM) pollution is a prominent global environmental problem. Understanding the risk characteristics and quantitative analysis of potential sources of soil HM pollution is of great significance for accurate prevention and control, scientific management, and safe utilization of soil resources. In the surface soil of Shanxian County, the contents of eight HMs, such as As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, were collected and identified in 330 surface soil samples.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Civil Engineering, Queen's University, 99 University Ave, Kingston K7L3N5, ON, Canada. Electronic address:
The degradation of permafrost due to climate change has significant effects on the hydrological processes and ecosystems in arctic and subarctic regions. Thermokarst lakes, formed from permafrost thaw and subsidence, play a crucial role in this process by influencing heat storage and exchange and accelerating the thaw rate of the surrounding permafrost. A direct effect of these lakes is the formation of taliks, perennially thawed soil.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Hydrology, Meteorology and Water Management, Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, ul Nowoursynowska 166, 02-787 Warsaw, Poland.
With their net carbon accumulation determined by the balance between gross ecosystem productivity (GEP) and carbon losses (from processes such as oxidation and decomposition), peatlands can function as either carbon sinks or carbon sources. Healthy, pristine peatlands are vital carbon sinks, while degraded peatlands can release significant amounts of carbon (C) into the atmosphere. This study investigates the use of peat vertical displacement (VD), detectable via remote sensing, as a proxy for net carbon accumulation in northern boreal and temperate peatlands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!