AI Article Synopsis

  • Microbes are essential in the arsenic biogeochemical cycle, using unique metabolic pathways to cope with arsenic toxicity, but the differences in how prokaryotic and eukaryotic microbes detoxify arsenic are not well understood.
  • Research identified a variety of arsenic biotransformation genes in 670 microbial genomes, revealing that prokaryotes have a broader range of genes for arsenic reduction and efflux while fungi possess more genes related to arsenic oxidation.
  • Findings show significant differences in gene expression and evolutionary rates between prokaryotes and fungi, underscoring the need to understand the diverse strategies microbes use for arsenic detoxification rather than focusing on individual genes.

Article Abstract

Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370035PMC
http://dx.doi.org/10.1093/ismeco/ycae106DOI Listing

Publication Analysis

Top Keywords

prokaryotic eukaryotic
12
eukaryotic microbes
12
arsenic
10
purifying selection
8
arsenic metabolism
8
metabolism pathways
8
pathways prokaryotic
8
species distribution
8
higher arsenite
8
bacteria upregulated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!