Editorial: O-GlcNAcylation and the immune system.

Front Immunol

Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.

Published: September 2024

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369405PMC
http://dx.doi.org/10.3389/fimmu.2024.1474042DOI Listing

Publication Analysis

Top Keywords

editorial o-glcnacylation
4
o-glcnacylation immune
4
immune system
4
editorial
1
immune
1
system
1

Similar Publications

Article Synopsis
  • O-GlcNAcylation is a modification that adds a sugar molecule, N-acetylglucosamine, to specific amino acids, influencing signaling pathways important for pyroptosis, a form of cell death.
  • Enhancing O-GlcNAcylation of the protein GSDMD is suggested as a key strategy for improving blood flow issues in sepsis, while GSDME's role in macrophage pyroptosis is linked to high glucose levels in periodontitis.
  • The review discusses O-GlcNAcylation's impact on the NLRP3 inflammasome and other regulators, highlighting its potential as a therapeutic target for diseases like sepsis and osteoarthritis by managing inflammation.
View Article and Find Full Text PDF

O-GlcNAc impacts mitophagy via the PINK1-dependent pathway.

Front Aging Neurosci

August 2024

School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States.

Background: The accumulation of dysfunctional mitochondria is an early feature of Alzheimer's disease (AD). The impaired turnover of damaged mitochondria increases reactive oxygen species production and lowers ATP generation, leading to cellular toxicity and neurodegeneration. Interestingly, AD exhibits a disruption in the global post-translational modification β-N-acetylglucosamine (O-GlcNAc).

View Article and Find Full Text PDF

Introduction: Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined.

View Article and Find Full Text PDF

Cumulative evidence suggests that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) plays an important regulatory role in pathophysiological processes. Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated, the potential mechanisms of O-GlcNAcylation in bone metabolism, particularly, in the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) remains unexplored. In this study, the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed, assuming that it could trigger more scholars to focus on research related to O-GlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!