Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect". Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice, which is supported by three stages of plasticity in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10-day winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, a transient local connectivity strengthening, and a delayed excitability increase. These plasticity events are causally linked. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the cascade of plasticity events as those during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning that ultimately leads to an increase in "aggressiveness" in repeated winners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370333PMC
http://dx.doi.org/10.1101/2024.08.19.608611DOI Listing

Publication Analysis

Top Keywords

plasticity aggression
8
aggression circuit
8
vmhvl cells
8
plasticity events
8
winning
6
plasticity
5
multi-stage plasticity
4
aggression
4
circuit underlying
4
underlying winner
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!