The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370589 | PMC |
http://dx.doi.org/10.1101/2024.08.25.609458 | DOI Listing |
Med Image Anal
January 2025
Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Background: Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA.
Objective: To validate the use of neural radiance fields (NeRF), a state-of-the-art computer vision technique, for rapid, high-fidelity 3-dimensional (3D) reconstruction in endoscopic sinus surgery (ESS).
Study Design: An experimental cadaveric pilot study.
Setting: Academic medical center.
Int J Med Sci
January 2025
Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
NaviNetics, Inc, Rochester, MN USA.
Stereotactic systems have traditionally used Cartesian coordinate combined with linear algebraic mathematical models to navigate the brain. Previously, the development of a novel stereotactic system allowed for improved patient comfort, reduced size, and carried through a simplified interface for surgeons. The system was designed with a work envelope and trajectory range optimized for deep brain stimulation applications only.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.
Neurosurgical operations treat involuntary movement disorders (MvDs), spasticity, cranial neuralgias, cancer pain, and other selected disorders, and implantable neurostimulation or drug delivery devices relieve MvDs, epilepsy, cancer pain, and spasticity. In contrast, studies of surgery or device implantations to treat chronic noncancer pain or mental conditions have not shown consistent evidence of efficacy and safety in formal, randomized, controlled trials. The success of particular operations in a finite set of disorders remains at odds with disconfirming results in others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!