How does the brain achieve a seemingly veridical and 'in-focus' perception of the world, knowing how severely corrupted visual information is by the eye's optics? Optical blur degrades retinal image quality by reducing the contrast and disrupting the phase of transmitted signals. Neural adaptation can attenuate the impact of blur on image contrast, yet vision rather relies on perceptually-relevant information contained within the phase structure of natural images. Here we show that neural adaptation can compensate for the impact of optical aberrations on phase congruency. We used adaptive optics to fully control optical factors and test the impact of specific optical aberrations on the perceived phase of compound gratings. We assessed blur-induced changes in perceived phase over three distinct exposure spans. Under brief blur exposure, perceived phase shifts matched optical theory predictions. During short-term (~1h) exposure, we found a reduction in blur-induced phase shifts over time, followed by after-effects in the opposite direction-a hallmark of adaptation. Finally, patients with chronic exposure to poor optical quality showed altered phase perception when tested under fully-corrected optical quality, suggesting long-term neural compensatory adjustments to phase spectra. These findings reveal that neural adaptation to optical aberrations compensates for alterations in phase congruency, helping restore perceptual quality over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370409PMC
http://dx.doi.org/10.1101/2024.08.21.608968DOI Listing

Publication Analysis

Top Keywords

neural adaptation
16
optical aberrations
12
perceived phase
12
phase
11
optical
8
phase congruency
8
phase shifts
8
optical quality
8
neural
5
adaptation eye's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!