Tubular epithelial cell damage can be repaired through a series of complex signaling pathways. An early event in many forms of tubular damage is the observation of DNA damage, which can be repaired by specific pathways depending upon the type of genomic alteration.. In this study, we report that the catalytic subunit of DNA protein kinase (DNA-PKcs), a central DNA repair enzyme involved in sensing DNA damage and performing double stranded DNA break repair, plays an important role in the extent of tubular epithelial cell damage following exposure to injurious acute and chronic stimuli. Selective loss of DNA-PKcs in the proximal tubules led to increased markers of kidney dysfunction, DNA damage, and tubular epithelial cell injury in multiple models of acute kidney injury, specifically bilateral renal ischemia-reperfusion injury and single dose of cisplatin (15 mg/kg IP). In contrast, in a mouse model of kidney fibrosis and chronic kidney disease (UUO),the protective effects of DNA-PKcs was not as obvious histologically from the tissue sections. In the absence of proximal tubular DNA-PKcs, there was reduced levels of fibrotic markers, α-SMA and fibronectin, which suggests that there may be a biphasic role of DNA-PKcs depending upon the conditions exerted upon the kidney. In conclusion, this study demonstrates that the catalytic subunit of DNA-PKcs plays a context-dependent role in the kidney to reduce DNA damage during exposure to various types of acute, but not chronic forms of injurious stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370575PMC
http://dx.doi.org/10.1101/2024.08.22.609216DOI Listing

Publication Analysis

Top Keywords

dna damage
16
catalytic subunit
12
tubular epithelial
12
epithelial cell
12
proximal tubules
8
dna
8
damage
8
tubular damage
8
kidney injury
8
cell damage
8

Similar Publications

Marek's Disease (MD), which can result in neurological damage and tumour formation, has large effects on the economy and animal welfare of the poultry industry worldwide. Previously, we mapped autosomal MD QTL regions (QTLRs) by individual genotyping of an F population from a full-sib advanced intercross line. We further mapped MD QTLRs on the chicken Z chromosome (GGZ) using the same F population, and by selective DNA pooling (SDP) of 8 elite egg production lines.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.

View Article and Find Full Text PDF

Delirium is a neuropsychiatric syndrome commonly presenting during acute illness. The pathophysiology of delirium is unknown, but neuroinflammation is suggested to play a role. In this cross-sectional study, we aimed to investigate whether cell-free DNA and markers of neutrophil extracellular traps in serum and CSF were associated with delirium and neuronal damage, assessed by neurofilament light chain.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.

Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.

View Article and Find Full Text PDF

Effect of freezing and thawing on ejaculated sperm and subsequent pregnancy and neonatal outcomes in IVF.

Front Endocrinol (Lausanne)

December 2024

Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!