A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Histone deacetylase inhibition expands cellular proteostasis repertoires to enhance neuronal stress resilience. | LitMetric

Neurons are long-lived, terminally differentiated cells with limited regenerative capacity. Cellular stressors such as endoplasmic reticulum (ER) protein folding stress and membrane trafficking stress accumulate as neurons age and accompany age-dependent neurodegeneration. Current strategies to improve neuronal resilience are focused on using factors to reprogram neurons or targeting specific proteostasis pathways. We discovered a different approach. In an unbiased screen for modifiers of neuronal membrane trafficking defects, we unexpectedly identified a role for histone deacetylases (HDACs) in limiting cellular flexibility in choosing cellular pathways to respond to diverse types of stress. Genetic or pharmacological inactivation of HDACs resulted in improved neuronal health in response to ER protein folding stress and endosomal membrane trafficking stress in and mammalian neurons. Surprisingly, HDAC inhibition enabled neurons to activate latent proteostasis pathways tailored to the nature of the individual stress, instead of generalized transcriptional upregulation. These findings shape our understanding of neuronal stress responses and suggest new therapeutic strategies to enhance neuronal resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370365PMC
http://dx.doi.org/10.1101/2024.08.21.608176DOI Listing

Publication Analysis

Top Keywords

membrane trafficking
12
enhance neuronal
8
stress
8
neuronal stress
8
protein folding
8
folding stress
8
trafficking stress
8
neuronal resilience
8
proteostasis pathways
8
neuronal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!