A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pan-omics-based characterization and prediction of highly multidrug-adapted strains from an outbreak fungal species complex. | LitMetric

Strains from the species complex (CGSC) have caused the Pacific Northwest cryptococcosis outbreak, the largest cluster of life-threatening fungal infections in otherwise healthy human hosts known to date. In this study, we utilized a pan-phenome-based method to assess the fitness outcomes of CGSC strains under 31 stress conditions, providing a comprehensive overview of 2,821 phenotype-strain associations within this pathogenic clade. Phenotypic clustering analysis revealed a strong correlation between distinct types of stress phenotypes in a subset of CGSC strains, suggesting that shared determinants coordinate their adaptations to various stresses. Notably, a specific group of strains, including the outbreak isolates, exhibited a remarkable ability to adapt to all three of the most commonly used antifungal drugs for treating cryptococcosis (amphotericin B, 5-fluorocytosine, and fluconazole). By integrating pan-genomic and pan-transcriptomic analyses, we identified previously unrecognized genes that play crucial roles in conferring multidrug resistance in an outbreak strain with high multidrug adaptation. From these genes, we identified biomarkers that enable the accurate prediction of highly multidrug-adapted CGSC strains, achieving maximum accuracy and area under the curve (AUC) of 0.79 and 0.86, respectively, using machine learning algorithms. Overall, we developed a pan-omic approach to identify cryptococcal multidrug resistance determinants and predict highly multidrug-adapted CGSC strains that may pose significant clinical concern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369464PMC
http://dx.doi.org/10.1016/j.xinn.2024.100681DOI Listing

Publication Analysis

Top Keywords

cgsc strains
16
highly multidrug-adapted
12
prediction highly
8
species complex
8
multidrug resistance
8
multidrug-adapted cgsc
8
strains
7
cgsc
5
pan-omics-based characterization
4
characterization prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!