Coronary microvascular dysfunction (CMD) refers to structural and functional abnormalities of the microcirculation that impair myocardial perfusion. CMD plays a pivotal role in numerous cardiovascular diseases, including myocardial ischemia with non-obstructive coronary arteries, heart failure, and acute coronary syndromes. This review summarizes recent advances in CMD pathophysiology, assessment, and treatment strategies, as well as ongoing challenges and future research directions. Signaling pathways implicated in CMD pathogenesis include adenosine monophosphate-activated protein kinase/Krüppel-like factor 2/endothelial nitric oxide synthase (AMPK/KLF2/eNOS), nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), Angiotensin II (Ang II), endothelin-1 (ET-1), RhoA/Rho kinase, and insulin signaling. Dysregulation of these pathways leads to endothelial dysfunction, the hallmark of CMD. Treatment strategies aim to reduce myocardial oxygen demand, improve microcirculatory function, and restore endothelial homeostasis through mechanisms including vasodilation, anti-inflammation, and antioxidant effects. Traditional Chinese medicine (TCM) compounds exhibit therapeutic potential through multi-targeted actions. Small molecules and regenerative approaches offer precision therapies. However, challenges remain in translating findings to clinical practice and developing effective pharmacotherapies. Integration of engineering with medicine through microfabrication, tissue engineering and AI presents opportunities to advance the diagnosis, prediction, and treatment of CMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366996 | PMC |
http://dx.doi.org/10.31083/j.rcm2508288 | DOI Listing |
Diabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
Department of Cardiovascular Medicine, JR Hiroshima Hospital, Higashi-ku, Hiroshima, Japan.
Background: Women with suspected coronary microvascular dysfunction (CMD) may be at higher risk of experiencing cognitive decline due to cerebral small vessel disease, a known contributor to Alzheimer's disease and related dementias (ADRD). A potential underlying mechanism that could accelerate this cognitive decline is the accumulation of brain tissue iron, which has been previously linked to changes in brain function potentially caused by oxidative stress and cell death. Therefore, we aim to elucidate whether a similar mechanism could affect women with suspected CMD by investigating the potential role of iron deposition on the brain's functional organization and its effect on cognition using advanced magnetic resonance imaging (MRI).
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA.
Regulation of gene expression in eukaryotic cells is critical for cell survival, proliferation, and cell fate determination. Misregulation of gene expression can have substantial, negative consequences that result in disease or tissue dysfunction that can be targeted for therapeutic intervention. Several strategies to inhibit gene expression at the level of mRNA transcription and translation have been developed, such as anti-sense inhibition and CRISPR-Cas9 gene editing.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Background: Women with suspected coronary microvascular dysfunction (CMD) may be at higher risk of experiencing cognitive decline due to cerebral small vessel disease, a known contributor to Alzheimer's disease and related dementias (ADRD). A potential underlying mechanism that could accelerate this cognitive decline is the accumulation of brain tissue iron, which has been previously linked to changes in brain function potentially caused by oxidative stress and cell death. Therefore, we aim to elucidate whether a similar mechanism could affect women with suspected CMD by investigating the potential role of iron deposition on the brain's functional organization and its effect on cognition using advanced magnetic resonance imaging (MRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!