The surface of a cell is crowded with membrane proteins. The size, shape, density, and mobility of extracellular surface proteins mediate cell surface accessibility to external molecules, viral particles, and other cells. However, predicting these qualities is not always straightforward, even when protein structures are known. We previously developed an experimental method for measuring flow-driven lateral transport of neutravidin bound to biotinylated lipids in supported lipid bilayers. Here, we use this method to detect hydrodynamic force applied to a series of lipid-anchored proteins with increasing size. We find that the measured force reflects both protein size and shape, making it possible to distinguish these features of intact, folded proteins in their undisturbed orientation and proximity to the lipid membrane. In addition, our results demonstrate that individual proteins are transported large distances by flow forces on the order of femtoNewtons, similar in magnitude to the shear forces resulting from blood circulation or from the swimming motion of microorganisms. Similar protein transport across living cells by hydrodynamic force may contribute to biological flow sensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480770 | PMC |
http://dx.doi.org/10.1016/j.bpj.2024.08.026 | DOI Listing |
PLoS One
January 2025
Aesthetic and Restorative Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq.
This study evaluated the extent to which obturation materials bypass fractured endodontic instruments positioned in the middle and apical thirds of severely curved simulated root canals using different obturation techniques. Sixty resin blocks with simulated root canals were used, each with a 50° curvature, a 6.5 mm radius of curvature, and a length of 16.
View Article and Find Full Text PDFSci Adv
January 2025
Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) family transporters are essential in glycan synthesis, flipping lipid-linked precursors across cell membranes. Yet, how they select their substrates remains enigmatic. Here, we investigate the substrate specificity of the MOP transporters in the capsular polysaccharide (CPS) synthesis pathway in .
View Article and Find Full Text PDFACS Nano
January 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.
View Article and Find Full Text PDFSmall Methods
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS) and Human Anatomy Resource Centre (HARC), Education Directorate, University of Liverpool, Liverpool, UK.
The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!