A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of artificial aging on fracture toughness and hardness of 3D-printed and milled 3Y-TZP zirconia. | LitMetric

Purpose: This study aimed to evaluate the impact of artificial aging on the fracture toughness and hardness of three-dimensional (3D)-printed and computer-aided design and computer-aided manufacturing (CAD-CAM) milled 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP).

Materials And Methods: Forty bar-shaped specimens (45 × 4 × 3 mm) were prepared using two manufacturing technologies: 3D printing (LithaCon 3Y 210, Lithoz GmbH, Vienna, Austria; n = 20) and milling (Initial Zirconia ST, GC, Japan; n = 20) of 3Y-TZP. The chevron-notch beam method was used to assess the fracture toughness according to ISO 24370. Specimens from each 3Y-TZP group were divided into two subgroups (n = 10) based on the artificial aging process (autoclaving): nonaged and aged. Nonaged specimens were stored at room temperature, while aged specimens underwent autoclave aging at 134°C under 2 bar-pressure for 5 h. Subsequently, the specimens were immersed in absolute 99% ethanol using an ultrasonic cleaner for 5 min. Each specimen was preloaded by subjecting it to a 4-point loading test, with a force of up to 200 N applied for three cycles. Further 4-point loading was conducted at a rate of 0.5 mm/min under controlled temperature and humidity conditions until fracture occurred. The maximum force (F) was recorded and the chevron notch was examined at 30 × magnification under an optical microscope for measurements before the fracture toughness (K) was calculated. Microhardness testing was also performed to measure the Vickers hardness number (VHN). A scanning electron microscope (SEM) coupled with an energy dispersive X-ray unit (EDX) was used to examine surface topography and chemical composition. X-ray diffraction (XRD) was conducted to identify crystalline structure. Data were statistically analyzed using two-way ANOVA and Student's t-test with a significance level of 0.05.

Results: The nonaged 3D-printed 3Y-TZP group exhibited a significantly higher fracture toughness value (6.07 MPa m) than the milled 3Y-TZP groups (p < 0.001). After autoclave aging, the 3D-printed 3Y-TZP group maintained significantly higher fracture toughness (p < 0.001) compared to the milled 3Y-TZP group. However, no significant differences in hardness values (p = 0.096) were observed between the aged and nonaged groups within each manufacturing process (3D-printed and milled) independently.

Conclusion: The findings revealed that the new 3D-printed 3Y-TZP produced by the lithography-based ceramic manufacturing (LCM) technology exhibited superior fracture toughness after autoclave aging compared to the milled 3Y-TZP. While no significant differences in hardness were observed between the aged groups, the 3D-printed material demonstrated greater resistance to fracture, indicating enhanced mechanical stability.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jopr.13943DOI Listing

Publication Analysis

Top Keywords

fracture toughness
28
milled 3y-tzp
16
3y-tzp group
16
artificial aging
12
autoclave aging
12
3d-printed 3y-tzp
12
fracture
9
3y-tzp
9
aging fracture
8
toughness hardness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!