A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-based metal-organic frameworks for enhanced nickel adsorption and its impact on nitrifying microbial activity. | LitMetric

Co-based metal-organic frameworks for enhanced nickel adsorption and its impact on nitrifying microbial activity.

Environ Sci Pollut Res Int

Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ingenierías y Ciencias Exactas, Periférico Norte Km 33.5, C.P. 97203, Mérida, Yucatán, México.

Published: September 2024

The release of nickel "Ni(II)" into aquatic environments is of great concern because of environmental and health issues. Metal-organic frameworks (MOFs) are one of the most promising technologies for removing heavy metals from water. In this work, an octahedral Co-based MOF (Co-MOF) was synthesized with a high Ni(II) removal capacity (q of 1534.09 ± 45.49 mg g) in aqueous media. For the first time, the effect of Co-MOF alone and in co-exposure with Ni(II) on nitrifying microbial consortium was assessed using dynamic microrespirometry. A single concentration of Co-MOF had no significant effects on nitrifying microbial consortium, while the concentration of Ni(II) exerted non-competitive inhibition on the nitrifying microbial consortium with an IC of 1.67 ± 0.03 mg L. In addition, the theoretical speciation analysis showed a decrease of 40% of IC when the free Ni(II) concentration was considered. Co-exposure of Co-MOF and Ni(II) during the nitrifying process allowed us to conclude that Co-MOF is an effective adsorbent for Ni(II) and can be used to mitigate the inhibitory effects of nickel on nitrifying microbial consortia, which is crucial for maintaining the good operation of wastewater treatment and balance of nitrogen cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34761-1DOI Listing

Publication Analysis

Top Keywords

nitrifying microbial
20
microbial consortium
12
metal-organic frameworks
8
niii nitrifying
8
nitrifying
6
niii
6
microbial
5
co-mof
5
co-based metal-organic
4
frameworks enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!