Background: The kidney is the most commonly affected organ in sepsis patients, and Krüppel-like transcription factor 15 (KLF15) has a kidney-protective effect and is highly enriched in the kidneys. This study aims to explore the role of KLF15 in sepsis-related acute kidney injury. Methods: A septic injury model in HK2 cells was established through the administration of lipopolysaccharide (LPS), followed by the transfection of an overexpression plasmid for KLF15. Cell viability was assessed using Cell Counting Kit-8 assay, and apoptosis was measured via flow cytometry. The levels of inflammatory cytokines were detected using ELISA, and western blot assay was employed to assess the expression of KLF15, PPARδ, as well as inflammatory and apoptosis-related proteins. The interaction between KLF15 and PPARδ was confirmed through the utilization of online databases and immunoprecipitation experiments. The mechanism was further validated using PPARδ agonists and small interfering RNA. Results: LPS-induced HK2 cells showed downregulated expression of KLF15 and PPARδ, along with decreased viability, accompanied by increased levels of apoptosis, TNFα, IL-1β, and IL-6. Additionally, LPS upregulated the expression of Bax, cytoplasmic cytochrome C [Cytc (cyt)], Cox-2, and p-NF-κB-p65 in HK2 cells, while simultaneously downregulating the expression of Bcl2 and mitochondrial cytochrome c [Cytc (mit)]. immunoprecipitation experiment revealed a possible interaction between KLF15 and PPARδ in HK2 cells. Ov-KLF15, Ov-PPARδ, or administration of PPARδ agonists effectively alleviated the aforementioned alterations induced by LPS. However, interference with PPARδ significantly attenuated the protective effect of Ov-KLF15 on HK2 cells. Conclusion: KLF15 attenuates LPS-induced apoptosis and inflammatory responses in HK2 cells via PPARδ.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000002431DOI Listing

Publication Analysis

Top Keywords

hk2 cells
24
klf15 pparδ
16
klf15
9
klf15 attenuates
8
apoptosis inflammatory
8
expression klf15
8
pparδ
8
interaction klf15
8
pparδ agonists
8
cytochrome [cytc
8

Similar Publications

Kidney stone disease is a major risk factor for impaired renal function, leading to renal fibrosis and end-stage renal disease. High global prevalence and recurrence rate pose a significant threat to human health and healthcare resources. Investigating the mechanisms of kidney stone-induced injury is crucial.

View Article and Find Full Text PDF

Therapeutic potential of -based Eefooton in patients with chronic kidney disease: from clinical to bench study.

Int J Med Sci

January 2025

Kaohsiung Veterans General Hospital Director, Department of Medical Education and Research Chairman of International Affairs Committee, Taiwan Society of Nephrology, Kaohsiung City 813414, Taiwan.

Chronic kidney disease (CKD) is a global health concern, and recent clinical evidence suggests the potential of traditional Chinese medicine (TCM) to slow CKD progression. This offers alternative strategies for CKD patients, mitigating risks related to polypharmacy and adverse drug reactions. Our self-controlled, prospective study aims to assess the impact of Eefooton (EFT), a TCM-based regimen, on kidney health in stage 3-5 CKD patients.

View Article and Find Full Text PDF

Objective: To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis.

Methods: CD19 or CD19CD27 (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated.

View Article and Find Full Text PDF

Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear.

View Article and Find Full Text PDF

Curcumin and bone marrow stem cells (BMSCs)-derived exosomes are considered to be useful for the treatment of many human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the role and underlying molecular mechanism of curcumin-loaded BMSCs-derived exosomes in the progression of SA-AKI remain unclear. Exosomes (BMSCs-EXO or BMSCs-EXO) were isolated from curcumin or DMSO-treated BMSCs, and then co-cultured with LPS-induced HK2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!