Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2024.08.025 | DOI Listing |
Int J Biol Macromol
January 2025
School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China. Electronic address:
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants.
View Article and Find Full Text PDFAdv Mater
January 2025
The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China.
Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
The development of healable polymers represents a significant advancement in materials science, addressing the need for sustainable solutions that can reduce waste and prolong the lifespan of various products. For the development of healable polymer fabrics, however, there are still unsolved issues because of limited healing cycles and poor mechanical properties. In this work, we present intrinsically healable materials for the creation of stretchable, healable fabrics.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!