In the realm of natural polysaccharides, hydrogen bonding is a prevalent feature, yet its role in enhancing photocatalytic antimicrobial properties has been underexplored. In this paper, heterojunctions formed by graphene oxide (GO) and ZIF-8 were locked in sodium alginate/ carboxylated cellulose nanocrystals via hydrogen bonding networks, designated as SCGZ. The SCGZ films exhibit superior photocatalytic performance compared to either ZIF-8 or heterojunctions. This enhancement is primarily due to two key factors: firstly, the hydrogen bonding network significantly enhances the transfer of protons and holes, thereby improving the separation efficiency of photo-generated carriers; secondly, the hydrogen bonding between the layers facilitates a more efficient charge transfer, which expedites the movement of electrons from ZIF-8 to GO upon illumination. In vitro studies demonstrated that the SCGZ films possess remarkable antibacterial capabilities, achieving 99.75 % and 99.61 % inhibition rates against S. aureus and E. coli, respectively. In vivo animal experiments have shown that SCGZ films can significantly accelerate the healing process of damaged tissues, with a healing efficiency of up to 90.5 %. This research provides additional insights into the development of natural polysaccharide-based multi‑hydrogen bonded macromolecules with enhanced photocatalytic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122550 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.
View Article and Find Full Text PDFChem Soc Rev
January 2025
College of Chemistry, Nankai University, Tianjin 300071, China.
Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France.
To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO-to-CO electrocatalytic reduction.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!