Vanadium dioxide (VO) is an excellent phase transition material widely used in various applications, and thus inevitably enters the environment via different routes and encounters various organisms. Nonetheless, limited information is available on the environmental hazards of VO. In this study, we investigated the impact of two commercial VO particles, nanosized S-VO and micro-sized M-VO on the white rot fungus Phanerochaete chrysosporium. The growth of P. chrysosporium is significantly affected by VO particles, with S-VO displaying a higher inhibitory effect on weight gain. In addition, VO at high concentrations inhibits the formation of fungal fibrous hyphae and disrupts the integrity of fungus cells as evidenced by the cell membrane damage and the loss of cytoplasm. Notably, at 200 μg/mL, S-VO completely alters the morphology of P. chrysosporium, while the M-VO treatment does not affect the mycelium formation of P. chrysosporium. Additionally, VO particles inhibit the laccase activity secreted by P. chrysosporium, and thus prevent the dye decoloration and sawdust decomposition by P. chrysosporium. The mechanism underlying this toxicity is related to the dissolution of VO and the oxidative stress induced by VO. Overall, our findings suggest that VO nanoparticles pose significant environmental hazards and risks to white rot fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.impact.2024.100528 | DOI Listing |
Heliyon
January 2025
Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.
The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).
View Article and Find Full Text PDFPlant Dis
January 2025
Huazhong Agricultural University, College of Plant Science and Technology, Wuhan, Hubei , China;
China is a major producer of pears in the world and anthracnose is the most important disease, which may include fruit rot and early defoliation, and further brings enormous economic losses. In August of 2023, a sudden outbreak of anthracnose disease, ranging from 70% to 90% disease incidence, occurred on fruits of Pyrus pyrifolia (Burm.f.
View Article and Find Full Text PDFTree Physiol
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.
View Article and Find Full Text PDFFood Chem
January 2025
Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China. Electronic address:
Grapevine white rot is a fungal disease that frequently occurs during the growing season, resulting in reduced fruit quality and severe yield losses. This work aimed to compare the differences in flavor profiles between wines made from different percentages of Coniella vitis-infected grapes by using FTIR spectrometer, sensory analysis, HS-SPME-GC-MS and HPLC-DAD. C.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China.
Numerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!