Apple pomace, an abundant agricultural by-product with low utilization rates, often leads to environmental pollution if not properly managed. This study aimed to enhance the nutritional value of apple pomace by comparing the effects of solid-state fermentation using complex probiotics and cellulase preparation. Additionally, the study investigated the dynamic changes in various components throughout the fermentation process with complex probiotics. The results of single-strain solid-state fermentation tests indicated that Lactiplantibacillus plantarum DPH, Saccharomyces cerevisiae SC9, and Bacillus subtilis C9 were the optimal strains for fermenting the most effective substrate combination, comprising 73 % apple pomace and 20 % millet bran. The strains (complex probiotics) and a cellulase preparation were used for the solid-state fermentation of the apple pomace mixture for nine days, respectively. The contents of acid detergent fiber, neutral detergent fiber, hemicellulose, and insoluble dietary fiber decreased by up to 9.99 %, 9.59 %, 23.21 %, and 14.34 %, respectively. In contrast, the content of soluble dietary fiber significantly increased by up to 29.74 %. Both methods reduced cellulose crystallinity and modified the substrate's surface structure, resulting in a looser arrangement. Fermentation with complex probiotics for three or six days increased the abundance of lactic acid bacteria, which comprised >87 % of the total microbial population. Concurrently, the abundance of detrimental bacteria, such as Salmonella, Acetobacter, Escherichia, and Pantoea, significantly decreased. Furthermore, fermentation with complex probiotics for six or nine days enhanced antioxidant properties, leading to a significant increase in beneficial metabolites, including amino acids, organic acids, gamma-aminobutyric acid, serotonin. In conclusion, complex probiotics can effectively substitute for cellulase preparation in the solid-state fermentation of apple pomace, with a six-day fermentation period yielding optimal results. This study provides valuable insights into enhancing the value of apple pomace in the feed industry and the effective application of agro-industrial by-products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2024.110896DOI Listing

Publication Analysis

Top Keywords

complex probiotics
28
apple pomace
28
solid-state fermentation
16
probiotics cellulase
12
fermentation apple
12
fermentation complex
12
cellulase preparation
12
fermentation
9
preparation solid-state
8
detergent fiber
8

Similar Publications

Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental condition, predominantly affecting children, characterized by inattention, hyperactivity, and impulsivity. A growing body of evidence has highlighted the potential influence of the gut microbiota on the onset and presentation of ADHD symptoms. The gut microbiota, a diverse microbial ecosystem residing within the gastrointestinal tract, exerts multiple effects on systemic physiology, including immune modulation, metabolic regulation, and neuronal signalling.

View Article and Find Full Text PDF

Bacterial adhesion in the gut is critical to evaluate their effectiveness as probiotics. Understanding the bacterial adhesion within the complex gut environment is challenging. This study explores the adhesion mechanisms and the adhesion potential of five selected bacterial strains (Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential.

Front Cell Neurosci

January 2025

Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.

Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.

Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.

View Article and Find Full Text PDF

Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis.

View Article and Find Full Text PDF

Microalgae have garnered a considerable attention as a sustainable substitute as customary feed ingredients for poultry, predominantly due to their extraordinary nutritive profile and purposeful properties. These minuscule organisms are protein rich, retain an ample quantity of essential fatty acids, vitamins, minerals, and antioxidants, thus are capable of improving nutritive value of poultry diets. Microalgae comparatively delivers an outstanding source of protein containing substantial amount of innumerable bioactive complexes, omega-3 fatty acids in addition to the essential amino acids (methionine and lysine), crucial for optimal growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!