Over the past 18 years, green tides have persistently occurred in the Yellow Sea. Micropropagules of these algae are key to bloom formation, yet their species composition and succession during dissipation remain underexplored. During the dissipation process of accumulated green tide algae, a large number of micropropagules are released. This study monitored the dissipation of green tide algae at a coastal site, tracking micropropagules in water and sediment using an internal transcribed spacer (ITS) and 5S rDNA primers. Results showed that the dissipation lasted about one month, with significant micropropagule release. Initially, micropropagules matched 5S-II Ulva prolifera, but later species like Ulva torta, Ulva simplex, Ulva flexuosa, and Ulva meridionalis emerged. Ulva meridionalis dominated sediment in July and August, while U. torta was prevalent in water, and U. flexuosa was dominant in other months. Accumulated U. prolifera in the intertidal zone may not contribute to the seeding of the next year's bloom. This study sheds light on the dissipation process and succession patterns of micropropagules in coastal environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2024.106719 | DOI Listing |
Mar Environ Res
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China. Electronic address:
The world's largest green tide, caused by Ulva prolifera, in the Yellow Sea negatively affects the social and economic development of China's coastal region. The dissolved organic matter (DOM) released from U. prolifera is a potential threat to the offshore ecological health.
View Article and Find Full Text PDFChem Soc Rev
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Microplastics (MPs) contamination was investigated along a freshwater-seawater continuum from Chumphon River to the Gulf of Thailand. The vertical distribution in the water column and contamination in green mussels were also studied. MPs were detected in all water samples and sediment samples.
View Article and Find Full Text PDFActa Neuropathol Commun
November 2024
Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
Background: Previous studies have reported that the tumor immune microenvironment (TIME) was associated with the prognosis of lung cancer patients and the efficacy of immunotherapy. However, given the significant challenges in obtaining specimens of brain metastases (BrMs), few studies explored the correlation between the TIME and the prognosis in patients with BrMs from lung adenocarcinoma (LUAD).
Methods: Transcript profiling of archival formalin-fixed and paraffin-embedded specimens of BrMs from 70 LUAD patients with surgically resected BrMs was carried out using RNA sequencing.
Harmful Algae
November 2024
Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Green Bioscience Area, Strategic Research Center, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan. Electronic address:
The raphidophyte Chattonella marina complex (hereafter Chattonella) consists of noxious red-tide-forming algae that are damaging to fish farms. Chattonella produces and secretes large amounts of the superoxide anion (•O), and the production of extracellular •O has been associated with fish mortality. We reported previously that photosynthetic electron transport is correlated with the production of •O in the genus Chattonella.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!