Autism Spectrum Disorder (ASD) is a neurological disorder that influences a person's comprehension and way of behaving. It is a lifetime disability that cannot be completely treated using any therapy up to date. Nevertheless, in time identification and continuous therapies have a huge effect on autism patients. The existing models took a long time to confirm the diagnosis process and also, it is highly complex to differentiate autism from various developmental disorders. To facilitate early diagnosis by providing timely intervention, saving healthcare costs and reducing stress for the family in the long run, this research introduces an affordable and straightforward diagnostic model to detect ASD using EEG and deep learning models. Here, a hybrid deep learning model called Cascade deep maxout fuzzy network (Cascade DMFN) is proposed to identify ASD and it is achieved by the integration of Deep Maxout Network (DMN) and hybrid cascade neuro-fuzzy. Moreover, hybrid similarity measures like Canberra distance and Kumar-hassebrook is employed to conduct the feature selection technique. Also, the EEG dataset and BCIAUT_P300 dataset are used for analyzing the designed Cascade DMFN for detecting Autism Spectrum Disorder. The designed Cascade DMFN has outperformed other classical models by yielding a high accuracy of 0.930, Negative Predictive Value (NPV) of 0.919, Positive Predictive Value (PPV) of 0.923, True Negative Rate (TNR) of 0.926, and True Positive Rate (TPR) of 0.934.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2024.108177 | DOI Listing |
Network
December 2024
Department of Computer Science and Engineering, P.S.R Engineering College, Sivakasi, India.
This study proposes a novel multi-agent system designed to detect Distributed Denial of Service (DDoS) attacks, addressing the increasing need for robust cybersecurity measures. The hypothesis posits that a structured multi-agent approach can enhance detection accuracy and response efficiency in DDoS attack scenarios. The methodology involves a five-stage detection model: (1) Preprocessing using a modified double sigmoid normalization technique to eliminate duplicate data; (2) Feature Extraction where raw data and improved correlation-based features, mutual information, and statistical features are identified; (3) Dimensionality Reduction conducted by a reducer agent to streamline the feature set; (4) Classification utilizing Deep Belief Networks (DBN), Bi-LSTM, and Deep Maxout models, with their weights optimally tuned using the hybrid optimization algorithm, WUJSO; and (5) Decision Making by the decision agent to ascertain the presence of attacks, followed by mitigation through modified entropy-based techniques.
View Article and Find Full Text PDFNetwork
December 2024
School of Computing, Asia Pacific University of Technology & Innovation, Kuala Lumpur, Malaysia.
Skin melanin lesions are typically identified as tiny patches on the skin, which are impacted by melanocyte cell overgrowth. The number of people with skin cancer is increasing worldwide. Accurate and timely skin cancer identification is critical to reduce the mortality rates.
View Article and Find Full Text PDFNetwork
September 2024
Department of Computer Science and Engineering, Netaji Subhas University of Technology, Delhi, India.
Monitoring Surveillance video is really time-consuming, and the complexity of typical crowd behaviour in crowded situations makes this even more challenging. This has sparked a curiosity about computer vision-based anomaly detection. This study introduces a new crowd anomaly detection method with two main steps: Visual Attention Detection and Anomaly Detection.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Department of ECE, NIT Jalandhar, Dr Br Ambekar NIT Jalandhar, India.
Autism Spectrum Disorder (ASD) is a neurological disorder that influences a person's comprehension and way of behaving. It is a lifetime disability that cannot be completely treated using any therapy up to date. Nevertheless, in time identification and continuous therapies have a huge effect on autism patients.
View Article and Find Full Text PDFCancer Invest
September 2024
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
This work proposed a liver cancer classification scheme that includes Preprocessing, Feature extraction, and classification stages. The source images are pre-processed using Gaussian filtering. For segmentation, this work proposes a LUV transformation-based adaptive thresholding-based segmentation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!