Numerical integration of the exchange-correlation potential is an inherently parallel problem that can be significantly accelerated by graphical processing units (GPUs). In this Letter, we present the first implementation of GPU-accelerated exchange-correlation potential in the GauXC library for relativistic, 2-component density functional theory. By benchmarking against copper, silver, and gold coinage metal clusters, we demonstrate the speed and efficiency of our implementation, achieving significant speedup compared to CPU-based calculations. One GPU card provides computational power equivalent to roughly 400 CPU cores in the context of this work. The speedup further increases for larger systems, highlighting the potential of our approach for future, more computationally demanding simulations. Our implementation supports arbitrary angular momentum basis functions, enabling the simulation of systems with heavy elements and providing substantial speedup to relativistic electronic structure calculations. This advancement paves the way for more efficient and extensive computational studies in the field of density functional theory.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00843DOI Listing

Publication Analysis

Top Keywords

density functional
12
functional theory
12
graphical processing
8
processing units
8
exchange-correlation potential
8
accelerating relativistic
4
relativistic exact-two-component
4
exact-two-component density
4
theory calculations
4
calculations graphical
4

Similar Publications

Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Certara SimCyp, Berwyn, PA, USA.

Background: While a number of recent anti-amyloid antibodies demonstrated a robust reduction of amyloid biomarkers in clinical trials, the impact on functional improvement is much more variable. We hypothesize that this larger variability is driven by comedications, common genotype variants and underlying tau pathology.

Method: In a previously calibrated computational neuroscience model of ADAS-Cog, we implemented the effect of soluble amyloid monomers and oligomers on glutamate and nicotinic AChR neurotransmission and the effect of intracellular tau oligomers on voltage-gated Na and K+ channels and synaptic density.

View Article and Find Full Text PDF

Background: Hypertension is a risk factor for cognitive impairment and dementia. Anti-hypertensives (AHT) are commonly used in old age, but their association with cognition and brain pathology is not well understood.

Method: To investigate the relation of AHT with change in cognitive function and postmortem brain pathology, we evaluated 4,207 older persons without known dementia at enrollment and a subset of 1880 participants who died and came to autopsy.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Cardiff University, Cardiff, United Kingdom.

Background: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!